您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(工学版)》

山东大学学报 (工学版) ›› 2023, Vol. 53 ›› Issue (4): 163-172.doi: 10.6040/j.issn.1672-3961.0.2022.020

• 其他 • 上一篇    

挖掘机智能辅助施工系统设计

赵天怀,王目树,潘为刚*,康超,秦石铭,徐飞   

  1. 山东交通学院信息科学与电气工程学院, 山东 济南 250357
  • 发布日期:2023-08-18
  • 作者简介:赵天怀(1994— ),男,山东济宁人,硕士研究生,主要研究方向为嵌入式系统应用与开发. E-mail:zthuai_chn@163.com. *通信作者简介:潘为刚(1980— ),男,山东日照人,教授,博士,硕士生导师,主要研究方向为智能制造与智能驾驶. E-mail:panweigang1980@163.com
  • 基金资助:
    山东省自然科学基金资助项目(ZR2022MF345);山东省重点研发计划(重大科技创新工程)资助项目(2020CXGC010110);山东省交通运输行业重点实验室支持计划资助项目

Design of intelligent auxiliary construction system for excavator

ZHAO Tianhuai, WANG Mushu, PAN Weigang*, KANG Chao, QIN Shiming, XU Fei   

  1. School of Information Science and Electrical Engineering, Shandong Jiaotong University, Jinan 250357, Shandong, China
  • Published:2023-08-18

摘要: 为解决挖掘机施工路径、位置与深度盲目和效率低的问题,设计并实现一种挖掘机辅助施工系统。采用北斗定位接收机、激光测距仪、陀螺仪等传感器对传统挖掘机进行信息化改造。根据挖掘机施工特点,提出基于欧拉图的挖掘机施工路径规划算法,融合遗传算法、原子搜索优化算法和粒子群算法对施工图进行欧拉化处理。根据多传感器信息建立挖掘机三维施工模型,实现挖掘点位置与深度的在线软测量。济南市某施工现场试验结果表明,本研究提出的辅助施工系统路径规划合理,施工位置测量误差小于6 cm,施工深度测量误差小于5 cm。挖掘机智能施工辅助系统可以有效提升施工效率,节省施工成本。

关键词: 挖掘机, 欧拉图, 群智能算法, 路径规划, 辅助施工, 机电一体化

中图分类号: 

  • TH24
[1] 马建,孙守增,芮海田,等. 中国筑路机械学术研究综述·2018[J]. 中国公路学报, 2018, 31(6): 1-164. MA Jian, SUN Shouzeng, RUI Haitian, et al. Review on China's road construction machinery research progress: 2018[J]. China Journal of Highway and Transport, 2018, 31(6): 1-164.
[2] 周盛世, 单梁, 常路, 等. 基于改进DDPG算法的机器人路径规划算法研究[J]. 南京理工大学学报(自然科学版), 2021, 45(3): 265-270. ZHOU Shengshi, SHAN Liang, CHANG Lu, et al. Robot path planning algorithm based on improved DDPG algorithm[J]. Journal of Nanjing University of Science and Technology, 2021, 45(3): 265-270.
[3] 刘子豪, 赵津, 刘畅, 等. 基于改进A*算法室内移动机器人路径规划[J]. 计算机工程与应用, 2021, 57(2): 186-190. LIU Zihao, ZHAO Jin, LIU Chang, et al. Path planning of indoor mobile robot based on improved A* algorithm[J]. Computer Engineering and Applications, 2021, 57(2): 186-190.
[4] HU X, LIANG T, WANG M, et al. Path planning for a new tree heuristic search algorithm[J]. Computer Engineering and Application, 2020, 56(11): 164-171.
[5] THARWAT A, ELHOSENY M, HASSANIEN A E, et al. Intelligent Bézier curve-based path planning model using chaotic particle swarm optimization algorithm[J]. Cluster Computing, 2019, 22(2): 4745-4766.
[6] CONESA-MU(~overN)OZ J, PAJARES G, RIBEIRO A. Mix-opt: a new route operator for optimal coverage path planning for a fleet in an agricultural environment[J]. Expert Systems with Applications, 2016, 54: 364-378.
[7] TONG X, SIWEI C, DONG W, et al. A novel path planning method for articulated road roller using support vector machine and longest accessible path with course correction[J]. IEEE Access, 2019, 7: 182784-182795.
[8] 李运华, 范茹军, 杨丽曼, 等. 智能化挖掘机的研究现状与发展趋势[J]. 机械工程学报, 2020, 56(13): 165-178. LI Yunhua, FAN Rujun, YANG Liman, et al. Research status and development trend of intelligent excavators[J]. Journal of Mechanical Engineering, 2020, 56(13): 165-178.
[9] 赵邢, 梁浩然, 梁荣华. 结合目标检测与双目视觉的三维车辆姿态检测[J]. 计算机辅助设计与图形学学报, 2019, 31(9): 1518-1527. ZHAO Xing, LIANG Haoran, LIANG Ronghua. Combining object detection and binocular vision for 3D car pose estimation[J]. Journal of Computer-Aided Design & Computer Graphics, 2019, 31(9):1518-1527.
[10] 张帆, 刘瑾, 杨海马,等. 基于载波相位差分技术的水平定姿挖掘装置[J]. 测控技术, 2021, 40(4): 84-89. ZHANG Fan, LIU Jin, YANG Haima, et al. Horizontal attitude distribution device based on carrier phase difference technology[J]. Measurement & Control Technology, 2021, 40(4): 84-89.
[11] 蒋毅, 王海波, 钱宇. 挖掘机操作臂姿态非接触式实时测量系统[J]. 机械设计与制造, 2018, 4(3): 105-108. JIANG Yi, WANG Haibo, QIAN Yu. The non-contact attitude measurement system for measuring excavator's manipulators in real-time[J]. Machinery Design & Manufacture, 2018, 4(3): 105-108.
[12] YUAN C, LI S, CAI H. Vision-based excavator detection and tracking using hybrid kinematic shapes and key nodes[J]. Journal of Computing in Civil Engineering, 2017, 31(1): 04016038.
[13] XU J, YOON H S. Vision-based estimation of excavator manipulator pose for automated grading control[J]. Automation in Construction, 2019, 98: 122-131.
[14] LIANG C J, LUNDEEN K M, MCGEE W, et al. A vision-based marker-less pose estimation system for articulated construction robots[J]. Automation in Construction, 2019, 104: 80-94.
[15] 宫乐, 殷晨波, 周俊静. 通过不变矩和BP神经网络进行挖掘机铲斗位置识别[J]. 机械设计与研究, 2017, 33(1): 178-181. GONG Yue, YIN Chenbo, ZHOU Junjing. Recognition of bucket on excavator based on invariant moment and back propagation neural network[J]. Machine Design & Research, 2017, 33(1): 178-181.
[16] SHI Y, ZHU Y Y, FANG J, et al. Pose measurement of excavator based on convolutional neural network[J]. Journal of Network Intelligence, 2021, 6(2): 392-400.
[17] MAJUMDER S, KAR S, PAL T. Uncertain multi-objective Chinese postman problem[J]. Soft Computing, 2019, 23(22): 11557-11572.
[18] 管梅谷. 关于中国邮递员问题研究和发展的历史回顾[J].运筹学学报, 2015, 19(3): 1-7. GUAN Meigu. A historical review on the research and development of Chinese postman problem[J]. Operations Research Transactions, 2015, 19(3): 1-7.
[19] KAYACI ÇODUR M, YILMAZ M. A time-dependent hierarchical Chinese postman problem[J]. Central European Journal of Operations Research, 2020, 28(1): 337-366.
[20] 王海英, 黄强, 李传涛, 等. 图论算法及其MATLAB实现[M]. 北京:北京航空航天大学出版社, 2010: 81-93.
[21] HASSANAT A, ALMOHAMMADI K, ALKAFAWEEN E, et al. Choosing mutation and crossover ratios for genetic algorithms: a review with a new dynamic approach[J]. Information, 2019, 10(12): 390.
[22] ZHAO W G, WANG L Y, ZHANG Z X. A novel atom search optimization for dispersion coefficient estimation in groundwater[J]. Future Generation Computer Systems, 2018, 91(2): 601-610.
[23] SUN P, LIU H, ZHANG Y, et al. An intensify atom search optimization for engineering design problems[J]. Applied Mathematical Modelling, 2021, 89: 837-859.
[24] LI J, JIN S, WANG C, et al. Weld line recognition and path planning with spherical tank inspection robots[J]. Journal of Field Robotics, 2022, 39(2): 131-152.
[25] NAGRA A A, HAN F, LING Q H. An improved hybrid self-inertia weight adaptive particle swarm optimization algorithm with local search[J]. Engineering Optimization, 2019, 51(7): 1115-1132.
[1] 李晓辉,刘小飞,孙炜桐,赵毅,董媛,靳引利. 基于车辆与无人机协同的巡检任务分配与路径规划算法[J]. 山东大学学报 (工学版), 2025, 55(5): 101-109.
[2] 赵红专,张鑫,张蓓聆,展新,李文勇,袁泉,王涛,周旦. 基于改进人工势场的智能车动态安全椭圆路径规划方法[J]. 山东大学学报 (工学版), 2025, 55(3): 46-57.
[3] 韩毅,刘毅超,关甜,兰理文,汤宁业. 改进A*和动态窗口法的无人车路径规划[J]. 山东大学学报 (工学版), 2025, 55(3): 16-24.
[4] 张飞凯,夏拥军,秦剑,游溢,彭飞. 基于A*算法的输电线路组塔施工吊装路径规划方法[J]. 山东大学学报 (工学版), 2024, 54(3): 141-148.
[5] 黄健堃,薛钢,刘延俊,王雨,李厚池,白发刚. 基于改进Bi-RRT算法的机器鱼路径规划方法[J]. 山东大学学报 (工学版), 2024, 54(1): 74-82.
[6] 张飞凯,黄永忠,李连茂,秦剑,刘晨. 基于Dijkstra算法的货运索道路径规划方法[J]. 山东大学学报 (工学版), 2022, 52(6): 176-182.
[7] 王雨,刘延俊,贾华,薛钢. 基于强化RRT算法的机械臂路径规划[J]. 山东大学学报 (工学版), 2022, 52(6): 123-130.
[8] 肖浩,廖祝华,刘毅志,刘思林,刘建勋. 实际环境中基于深度Q学习的无人车路径规划[J]. 山东大学学报 (工学版), 2021, 51(1): 100-107.
[9] 李彩虹,方春,王志强,夏斌,王凤英. 基于超混沌同步控制的移动机器人全覆盖路径规划[J]. 山东大学学报 (工学版), 2019, 49(6): 63-72.
[10] 周风余, 万方, 焦建成, 边钧健. 家庭陪护机器人自主充电系统研究与设计[J]. 山东大学学报 (工学版), 2019, 49(1): 55-65.
[11] 张强. 核环境多关节蛇形机械臂的运动控制系统设计[J]. 山东大学学报 (工学版), 2018, 48(6): 122-131.
[12] 严宣辉, 肖国宝*. 基于定长实数路径编码机制的移动机器人路径规划[J]. 山东大学学报(工学版), 2012, 42(1): 59-65.
[13] 刘彬,张仁津. 一种采用两段粒子群优化的路径规划方法[J]. 山东大学学报(工学版), 2012, 42(1): 12-18.
[14] 陈明志1,许春耀2,陈健2,余轮2. 基于语义信息的虚拟环境路径规划[J]. 山东大学学报(工学版), 2011, 41(4): 106-112.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 王素玉,艾兴,赵军,李作丽,刘增文 . 高速立铣3Cr2Mo模具钢切削力建模及预测[J]. 山东大学学报(工学版), 2006, 36(1): 1 -5 .
[2] 李 侃 . 嵌入式相贯线焊接控制系统开发与实现[J]. 山东大学学报(工学版), 2008, 38(4): 37 -41 .
[3] 孔祥臻,刘延俊,王勇,赵秀华 . 气动比例阀的死区补偿与仿真[J]. 山东大学学报(工学版), 2006, 36(1): 99 -102 .
[4] 陈瑞,李红伟,田靖. 磁极数对径向磁轴承承载力的影响[J]. 山东大学学报(工学版), 2018, 48(2): 81 -85 .
[5] 李可,刘常春,李同磊 . 一种改进的最大互信息医学图像配准算法[J]. 山东大学学报(工学版), 2006, 36(2): 107 -110 .
[6] 季涛,高旭,孙同景,薛永端,徐丙垠 . 铁路10 kV自闭/贯通线路故障行波特征分析[J]. 山东大学学报(工学版), 2006, 36(2): 111 -116 .
[7] 浦剑1 ,张军平1 ,黄华2 . 超分辨率算法研究综述[J]. 山东大学学报(工学版), 2009, 39(1): 27 -32 .
[8] 王丽君,黄奇成,王兆旭 . 敏感性问题中的均方误差与模型比较[J]. 山东大学学报(工学版), 2006, 36(6): 51 -56 .
[9] 孙殿柱,朱昌志,李延瑞 . 散乱点云边界特征快速提取算法[J]. 山东大学学报(工学版), 2009, 39(1): 84 -86 .
[10] 赵然杭,陈守煜 . 水资源数量与质量联合评价理论模型研究[J]. 山东大学学报(工学版), 2006, 36(3): 46 -50 .