您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(工学版)》

山东大学学报 (工学版) ›› 2026, Vol. 56 ›› Issue (1): 142-148.doi: 10.6040/j.issn.1672-3961.0.2025.160

• 土木工程 • 上一篇    

阴极保护在海上光伏钢结构桩基的应用

王峰1,林斌2   

  1. 1.中广核(山东)新能源投资有限公司, 山东 济南 250003;2.上海交通大学材料科学与工程学院, 上海 200240
  • 发布日期:2026-02-03
  • 作者简介:王峰(1978— ),男,江苏徐州人,高级工程师,主要研究方向为新能源领域的工程建设与运维技术. E-mail:18566287680@163.com

Application of cathodic protection system for offshore photovoltaic pile foundation

WANG Feng1, LIN Bin2   

  1. WANG Feng1, LIN Bin2(1. CGN(Shandong)New Energy Investment Co., Ltd., Jinan 250003, Shandong, China;
    2. School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
  • Published:2026-02-03

摘要: 针对海洋侵蚀性环境导致海上光伏桩基腐蚀与结构损伤,威胁电站安全运行并增加运维成本的问题,采用外加电流阴极保护(impressed current cathodic protection, ICCP)方法对海上光伏桩基进行腐蚀防护。以中国首座固定桩基式海上光伏电站(HG30 项目)为研究对象,通过COMSOL Multiphysics构建化学场-电场耦合仿真模型,分析辅助阳极数量、布置位置对电位分布的影响;在HG30项目典型分区布置电源装置、辅助阳极与参比电极,开展现场馈电试验,验证不同输出电流下的防护效果。试验结果表明,当在水下5 m处配置1个辅助阳极、15 m处配置1个参比电极时,在输出电流为4~5 A条件下,外加电流阴极保护系统可对200 m范围内的桩基进行良好的腐蚀防护。

关键词: 海上光伏, 外加电流阴极保护, 腐蚀防护, 仿真模型, 馈电试验

Abstract: To address the issue of corrosion and structural damage to offshore photovoltaic pile foundations caused by aggressive marine environments, which threatened the operational safety of power plants and increased maintenance costs, the impressed current cathodic protection(ICCP)method was employed for corrosion protection. The investigation utilized the first fixed-pile-based offshore photovoltaic power station in China(project HG30). A coupled chemical field-electric field simulation model was developed using COMSOL Multiphysics to analyze the influence of the number and arrangement of auxiliary anodes on potential distribution. Field current feeding tests were conducted in typical zones of the project HG30, where power supply units, auxiliary anodes, and reference electrodes were deployed to validate the protective effectiveness under varying output currents. The results indicated that with one auxiliary anode installed at 5 m below water level and one reference electrode at 15 m depth, the ICCP system provided effective corrosion protection for pile foundations within a 200 m radius at the output current of 4-5 A.

Key words: offshore photovoltaic, impressed current cathodic protection, corrosion protection, simulation model, current feeding test

中图分类号: 

  • U177
[1] TRAPANI K, MILLAR D L. Proposing offshore photovoltaic(PV)technology to the energy mix of the Maltese islands[J]. Energy Conversion and Management, 2013, 67: 18-26.
[2] LIU C K, KONG Z R, KAO M J, et al. A novel accelerated corrosion test for supporting devices in a floating photovoltaic system[J]. Applied Science, 2021, 11(8): 3308.
[3] 郑洁, 杨淑涵, 柳存根, 等. 海洋可再生能源装备技术发展研究[J]. 中国工程科学, 2023, 25(3): 22-32. ZHENG Jie, YANG Shuhan, LIU Cungen, et al. Development of marine renewable energy equipment and technologies[J]. Strategic Study of CAE, 2023, 25(3): 22-32.
[4] 王天宇. 海上光伏发展现状及开发前景展望[J]. 船舶标准化与质量, 2024(5): 24-33.
[5] 徐卫兵, 惠星, 李东侠, 等. 桩基固定式海上光伏项目开发建设策略[J]. 西北水电, 2023(5): 118-122. XU Weibing, HUI Xing, LI Dongxia, et al. Development and construction strategies for fixed offshore photovoltaic projects with pile foundation[J]. Northwest Hydropower, 2023(5): 118-122.
[6] 黄鑫. 基于Z-number 的海上光伏发电项目投资风险决策研究[D]. 北京: 华北电力大学, 2021: 3-5. HUANG Xin. Study on investment risk decision of offshore photovoltaic project based on Z-number[D]. Beijing: North China Electric Power University, 2021: 3-5.
[7] 水电水利规划设计总院. 中国可再生能源发展报告[R]. 北京: 中国水利水电出版社, 2021: 35-36.
[8] 惠星, 穆鹏飞, 张艳, 等. 海上光伏项目的前期开发: 以山东省沿海为例[J]. 西北水电, 2023(1): 96-101. HUI Xing, MU Pengfei, ZHANG Yan, et al. Early-stage development of offshore PV projects: taking the coastal areas of Shandong Province as an example[J]. Northwest Hydropower, 2023(1): 96-101.
[9] 姜冠男. 我国海上光伏产业现状及发展趋势分析[J]. 现代工业经济和信息化, 2024, 14(1): 77-79. JIANG Guannan. Analysis of the current situation and development trend of China's offshore photovoltaic industry[J]. Modern Industrial Economy and Informa-tionization, 2024, 14(1): 77-79.
[10] 董建业, 黄凯龙, 许立, 等. 海上固定式光伏薄壁型钢桁架耐腐蚀性研究[J]. 涂层与防护, 2024, 45(1): 8-12. DONG Jianye, HUANG Kailong, XU Li, et al. Research on anticorrosion performance of fixed thin steeltruss for photovoltaic energy at offshore area[J]. Coating and Protection, 2024, 45(1): 8-12.
[11] ALTAF K. Part-Ⅱ: optimum designing of cathodic protection systems of marine platforms[C] //2019 16th International Bhurban Conference on Applied Sciences and Technology(IBCAST). Islamabad, Pakistan: IEEE, 2019: 842-845.
[12] MOMBER A. Corrosion and corrosion protection of support structures for offshore wind energy devices(OWEA)[J]. Materials and Corrosion, 2011, 62(5): 391-404.
[13] 任伟, 陈有登, 谢志猛, 等. 海上风电防腐蚀研究现状与前景[J]. 应用能源技术, 2022(2): 49-52. REN Wei, CHEN Youdeng, XIE Zhimeng, et al. Research status and prospect of corrosion prevention for offshore wind power[J]. Applied Energy Technology, 2022(2): 49-52.
[14] 任伟, 陈亚宾, 徐华利, 等. 海上风电设备腐蚀机理及腐蚀现状研究[J]. 船舶工程, 2021, 43(增刊1): 1-5. REN Wei, CHEN Yabin, XU Huali, et al. Study on corrosion mechanism and corrosion status of offshore wind power equipment[J]. Ship Engineering, 2021, 43(Suppl.1): 1-5.
[15] 徐初琪, 董建业, 彭儒, 等. 海上光伏腐蚀防护系统性解决方案[J]. 上海涂料, 2023, 61(4): 33-37. XU Chuqi, DONG Jianye, PENG Ru, et al. Systematic solution for corrosion protection of offshore photovoltaics[J]. Shanghai Coatings, 2023, 61(4): 33-37.
[16] MOMBER A W, MARQUARDT T. Protective coatings for offshore wind energy devices(OWEAs): a review[J]. Journal of Coatings Technology and Research, 2018, 15(1): 13-40.
[17] 苏芳眉, 谢小松. 光伏支架用微型钢桩的防腐措施及其适用性综述[J]. 太阳能, 2023(12): 82-90. SU Fangmei, XIE Xiaosong. Overview of anti-corrosion measures and their applicability for micro steel piles for PV brackets[J]. Solar Energy, 2023(12): 82-90.
[18] 谈诚, 许一川, 任剑锋, 等. 沿海环境中光伏钢结构支架的常用防腐蚀技术[J]. 腐蚀与防护, 2023, 44(7): 81-85. TAN Cheng, XU Yichuan, REN Jianfeng, et al. Common anti-corrosion technology of photovoltaic steel structure supports in coastal environments[J]. Corrosion & Protection, 2023, 44(7): 81-85.
[19] PRICE S J, FIGUEIRA R B. Corrosion protection systems and fatigue corrosion in offshore wind structures: current status and future perspectives[J]. Coatings, 2017, 7(2): 25.
[20] VITTONATO J, PELLET M A. Platform cathodic protection retrofit with anodes racks and subsea current measurement[C] //Corrosion 2016. Vancouver, Canada: NACE International, 2016: 1-12.
[21] 刘骁, 贾志军. 海上光伏的腐蚀破坏与防护措施[J]. 环境技术, 2024, 42(3): 38-41. LIU Xiao, JIA Zhijun. Corrosion damage and protective measures of offshore photovoltaic[J]. Environmental Technology, 2024, 42(3): 38-41.
[22] 和一帆, 金曦, 孙吉星, 等. 海上风电基础阴极保护技术研究[J]. 装备环境工程, 2024, 21(1): 89-95. HE Yifan, JIN Xi, SUN Jixing, et al. Cathodic protection technology for offshore wind power foundation[J]. Equipment Environmental Engineering, 2024, 21(1): 89-95.
[23] HAJIGHOLAMI M, RAEISSI K, JAZI H S, et al. Modeling the cathodic protection system for a marine platform jacket[J]. Materials Performance, 2017, 56(4): 34-38.
[24] 刘则宏, 舒文豪. 外加电流阴极保护技术在海洋平台防腐中的应用[J]. 中文科技期刊数据库(文摘版)工程技术, 2023(12): 5-8.
[25] HUCK T, JAVIA S. Impressed current anode systems for jetty piling protection[J]. Materials Performance, 2016, 55(10): 22-25.
[26] 高俊杰, 鲁成林, 张继超. 海上光伏的腐蚀破坏与防护策略研究[J]. 科技资讯, 2025, 23(5): 190-192. GAO Junjie, LU Chenglin, ZHANG Jichao. Research on corrosion damage and protection strategies of offshore photovoltaics[J]. Science & Technology Information, 2025, 23(5): 190-192.
[27] MAKAA O M, CHAUDHARY T N, ALASWAD G, et al. Applications of solar photovoltaics in powering cathodic protection systems: a review[J]. Clean Technologies and Environmental Policy, 2024, 26: 2755-2776.
[28] LIU G C, SUN W, WANG L,et al. Modeling cathodic shielding of sacrificial anode cathodic protection systems in seawater[J]. Materials and Corrosion, 2012, 63(12): 1117-1124.
[29] 国家能源局. 海上钢质构筑物外加电流阴极保护: SY/T 7699—2023[S]. 北京: 石油工业出版社, 2023: 5.
[30] DNV. Cathodic protection design: DNV-RP-B401—2021[S]. Oslo, Norway: Global IHS Markit, 2021: 17.
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!