Journal of Shandong University(Engineering Science) ›› 2015, Vol. 45 ›› Issue (5): 13-21.doi: 10.6040/j.issn.1672-3961.2.2015.168
WANG Xiaochu1, WANG Shitong1, BAO Fang2
CLC Number:
[1] 唐寿成. 图像分类方法的比较及应用[D].北京:北京邮电大学, 2011. TANG Shoucheng. Comparison of image classification method and its application[D].Beijing:Beijing University of Posts and Telecommunications, 2011. [2] 朱建华, 刘政凯, 俞能海. 一种多光谱遥感图象的自适应最小距离分类方法[J].中国图象图形学报,2000, 5(1):21-24. ZHU Jianhua, LIU Zhengkai, YU Nenghai. Remote sensing image classification using an adaptive min-distance algorithm[J]. Journal of Image and Graphics, 2000, 5(1):21-24. [3] HARTIGAN J A, WONG M A. Algorithm AS 136: a K-means clustering algorithm[J]. Applied Statistics, 1979, 29(1):100-108. [4] WANG J. Locality-constrained linear coding for image classification[J]. IEEE Conference on Computer Vision & Pattern Recognition, 2010, 119(5):3360-3367. [5] PRIYA T, PRASAD S, WU H. Superpixels for spatially reinforced bayesian classification of hyperspectral images[J]. IEEE Geoscience & Remote Sensing Letters, 2015, 12(5):1071-1075. [6] BERTHOD M, KATO Z, SHAN Y, et al. Bayesian image classification using Markov random fields[J]. Image & Vision Computing, 1996, 14(4):285-295. [7] NIGSCH F, BENDER A, VAN BUUREN B, et al. Melting point prediction employing k-nearest neighbor algorithms and genetic parameter optimization[J]. Journal of Chemical Information and Modeling, 2006, 46(6):2412-2422. [8] HOULE M E, MA X, ORIA V, et al. Improving the quality of K-NN graphs through vector sparsification:application to image databases[J]. International Journal of Multimedia Information Retrieval, 2014, 3(4):259-274. [9] SUYKENS J A K, VANDEWALLE J. Least squares support vector machine classifiers[J]. Neural Processing Letters, 1999, 9(3):293-300. [10] LANCKRIET G R G, GHAOUI L E, BHATTACHARYYA C, et al. Minimax probability machine[J]. Advances in Neural Information Processing Systems, 2001, 37(1):192-200. [11] WANG Y, HAN J. Study on iris image classification approach based on minimax probability machine[J]. Journal of Xi'an Jiaotong University, 2006, 40(6):643-651. [12] NG J K C, ZHONG Y, YANG S. A comparative study of minimax probability machine-based approaches for face recognition[J]. Pattern Recognition Letters, 2007, 28(15):1995-2002. [13] LANCKRIET G R G, EL GHAOUI L, BHATTACHARYYA C, et al. A robust minimax approach to classification[J]. Journal of Machine Learning Research, 2003, 3(3):555-582. [14] BERTSIMAS D, POPESCU I. Optimal inequalities in probability theory: a convex optimization approach[J]. SIAM Journal on Optimization, 2005, 15(3):780-804. [15] BERTSIMAS D, TSITSIKLIS J. Introduction to linear optimization[J]. Siam Review, 1998, 20(256):554-575. [16] CHERNOFF H. The selection of effective attributes for deciding between hypotheses using linear discriminant functions[R]. California, USA:Univ Calif Dept of Statistics, 1970:56-60. [17] 蒋艳凰, 赵強利. 机器学习方法[M]. 北京:电子工业出版社, 2009:5-30. [18] 陈宝林. 最优化理论与算法[M]. 北京:清华大学出版社有限公司, 2005:281-322. [19] XU J. An extended one-versus-rest support vector machine for multi-label classification[J]. Neurocomputing, 2011, 74(17):3114-3124. [20] HSU C W, LIN C J. A comparison of methods for multiclass support vector machines[J]. Neural Networks, IEEE Transactions on, 2002, 13(2):415-425. [21] (¨overU)BEYLI E D. ECG beats classification using multiclass support vector machines with error correcting output codes[J]. Digital Signal Processing, 2007, 17(3):675-684. |
[1] | HE Qijia, LIU Zhenbing, XU Tao, JIANG Shujie. MR image classification based on LBP and extreme learning machine [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2017, 47(2): 86-93. |
|