您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(工学版)》

山东大学学报 (工学版) ›› 2025, Vol. 55 ›› Issue (3): 46-57.doi: 10.6040/j.issn.1672-3961.0.2024.003

• 交通运输工程——智慧交通专题 • 上一篇    

基于改进人工势场的智能车动态安全椭圆路径规划方法

赵红专1,2,张鑫1,张蓓聆1,展新2,李文勇1,袁泉3,王涛1,周旦1   

  1. 1.广西智慧交通重点实验室(桂林电子科技大学), 广西 桂林 541004;2.东风柳州汽车有限公司商用车技术中心, 广西 柳州 545005;3.清华大学车辆与运载学院, 北京 100084
  • 发布日期:2025-06-05
  • 作者简介:赵红专(1985— ),男,广西桂林人,教授,硕士生导师,博士,主要研究方向为智慧交通系统、交通信息及控制以及智能网联汽车等. E-mail:zhaohongzhuan@guet.edu.cn
  • 基金资助:
    国家自然科学基金资助项目(52362045);广西科技重大专项资助项目(桂科AA23062053);广西精密导航技术与应用重点实验室基金资助项目(DH202225)

Adynamic safe elliptical path planning method for intelligent vehicles based on improved artificial potential field

ZHAO Hongzhuan1,2, ZHANG Xin1, ZHANG Beiling1, ZHAN Xin2, LI Wenyong1, YUAN Quan3, WANG Tao1, ZHOU Dan1   

  1. ZHAO Hongzhuan1, 2, ZHANG Xin1, ZHANG Beiling1, ZHAN Xin2, LI Wenyong1, YUAN Quan3, WANG Tao1, ZHOU Dan1(1. Guangxi Key Laboratory of Intelligent Transportation(Guilin University of Electronic Technology), Guilin 541004, Guangxi, China;
    2. Commercial Vehicle Technology Center, Dongfeng Liuzhou Motor Co., Ltd., Liuzhou 545005, Guangxi, China;
    3. School of Vehicles and Mobility, Tsinghua University, Beijing 100084, China
  • Published:2025-06-05

摘要: 针对传统人工势场法在智能车进行避障路径规划时极易出现的斥力参数难以标定、局部极值、势场力不平衡以及目标不可达等问题,提出一种基于改进人工势场的智能车动态安全椭圆路径规划方法。考虑到速度与跟踪误差关联性引入横向虚拟安全空间,构建基于动态补偿的横纵向椭圆动态安全距离模型,据此设置引斥力的作用范围,解决斥力参数难以标定的问题;基于高斯函数考虑位置矢量关系提出平衡因子和可变调节因子,解决局部极值、势场力不平衡以及目标不可达问题;设计模型预测控制器跟踪规划路径。试验结果表明:本研究提出的方法可有效解决传统人工势场法在智能车进行路径规划时出现的斥力参数难以标定、局部极值、势场力不平衡以及目标不可达等问题,同时与RRT*算法相比,其算法运行效率提高69.5%,路径平均曲率降低62.2%,在单障碍物和多障碍物的车辆联合仿真规划场景中其平稳性和舒适性显著提高。实车试验结果表明算法可应用于实车路径规划。

关键词: 路径规划, 改进人工势场法, 位置矢量, 动态补偿, 模型预测控制

Abstract: This study addressed the challenges inherent in the traditional artificial potential field method used in intelligent vehicle path planning, specifically the intricate calibration of the repulsive force parameter, prevalence of local extreme values, imbalance of potential field force, and the issue of unreachable targets. A novel approach was proposed: a dynamic safe elliptical path planning method for intelligent vehicles based on the improved artificial potential field. This study delineated the concept of a transverse virtual safe space, taking into account the interplay between speed and tracking error. It developed an elliptic dynamic safe distance model, both transverse and longitudinal, predicated on dynamic compensation. This model facilitated the calibration of the gravitational repulsive force range, thereby addressing the prevalent challenge of repulsive parameter calibration. Building upon this framework, the paper introduced an equilibrium factor and a variable adjustment factor, both derived from the Gaussian function. These factors were designed considering the relationship between position vectors, effectively addressing issues such as local extremes, potential field force imbalances, and target inaccessibility. A model predictive controller was meticulously designed for the effective tracking control of this path. The experimental outcomes demonstrated the efficacy of the proposed method in resolving the intricate challenges associated with the calibration of repulsive force parameters, local extremes, potential field force imbalances, and target unreachability in intelligent vehicle path planning. Notably, the operational efficiency of the algorithm was enhanced by 69.5% relative to the RRT* algorithm, and there was a notable 62.2% reduction in the average path curvature. The method significantly enhanced the smoothness and comfort in both single-obstacle and multi-obstacle vehicular simulation planning scenarios, demonstrating its versatility and effectiveness in varying conditions. The real-vehicle experiment results affirmed the applicability of the algorithm in actual path planning scenarios.

Key words: path planning, improved artificial potential field method, position vectors, dynamic compensation, model predictive control

中图分类号: 

  • U491
[1] 李克强, 戴一凡, 李升波, 等. 智能网联汽车(ICV)技术的发展现状及趋势[J]. 汽车安全与节能学报, 2017, 8(1): 1-14. LI Keqiang, DAI Yifan, LI Shengbo, et al. State-of-the-art and technical trends of intelligent and connected vehicles[J]. Journal of Automotive Safety and Energy, 2017, 8(1): 1-14.
[2] WANG P Y, LIU Y L, YAO W M, et al. Improved A-star algorithm based on multivariate fusion heuristic function for autonomous driving path planning[J]. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 2023, 237(7): 1527-1542.
[3] 刘长石, 陈慧璇, 吴张. 城市物流配送的混合车辆路径规划模型与优化算法[J]. 控制与决策, 2023, 38(3): 759-768. LIU Changshi, CHEN Huixuan, WU Zhang. Programming model and optimization algorithm for the mixed fleet vehicle routing problem in urban logistics distribution[J]. Control and Decision, 2023, 38(3): 759-768.
[4] LI K R, HU Q Q, LIU J P. Path planning of mobile robot based on improved multiobjective genetic algorithm[J]. Wireless Communications and Mobile Computing, 2021(1): 1-12.
[5] SALZMAN O, HALPERIN D. Asymptotically near-optimal RRT for fast, high-quality motion planning[J]. IEEE Transactions on Robotics, 2016,32(3): 473-483.
[6] KHATIB O. Real-time obstacle avoidance for manipulators and mobile robots[J]. The International Journal of Robotics Research, 1986, 5(1): 90-98.
[7] ROSTAMI S M H, SANGAIAH A K, WANG J, et al. Obstacle avoidance of mobile robots using modified artificial potential field algorithm[J]. EURASIP Journal on Wireless Communications and Networking, 2019(1): 70.
[8] SUN S Y, YIN G Q, LI X P. Path planning for mobile robot using the novel repulsive force algorithm[C] //IOP Conference Series: Earth and Environmental Science. Sanya, China: IOP Publishing, 2018: 052067.
[9] SONG J, HAO C, SU J C. Path planning for unmanned surface vehicle based on predictive artificial potential field[J]. International Journal of Advanced Robotic Systems, 2020, 17(2):1-13.
[10] DUAN Y J, YANG C B, ZHU J H, et al. Active obstacle avoidance method of autonomous vehicle based on improved artificial potential field[J]. International Journal of Advanced Robotic Systems, 2022, 19(4): 1-10.
[11] LAI D C, DAI J Y. Research on multi-UAV path planning and obstacle avoidance based on improved artificial potential field method[C] //2020 3rd International Conference on Mechatronics, Robotics and Automation(ICMRA). Shanghai, China: IEEE, 2020: 84-88.
[12] ZHA M, WANG Z W, FENG J, et al. Unmanned vehicle route planning based on improved artificial potential field method [C] //Journal of Physics: Conference Series. Xi'an, China: IOP Publishing, 2020: 012059.
[13] 唐志荣. 基于危险势能场的车辆转向避撞路径规划与跟踪研究[D]. 重庆: 西南大学, 2018. TANG Zhirong. Research on vehicle steering collision avoidance path planning and tracking based on hazard potential energy field [D]. Chongqing: Southwest University, 2018.
[14] FAN X J, GUO Y J, LIU H, et al. Improved artificial potential field method applied for AUV path planning[J]. Mathematical Problems in Engineering, 2020, 2020: 1-21.
[15] 李古月. 基于改进人工势场的自动驾驶路径规划与跟踪控制[D]. 重庆: 重庆交通大学, 2019. LI Guyue.Automatic driving path planning and tracking control based on improved artificial potential field [D]. Chongqing: Chongqing Jiaotong University, 2019.
[16] 赵颖, 俞庭, 张琪, 等. 路径跟踪控制算法仿真分析与试验验证[J]. 汽车技术, 2022(7):15-24. ZHAO Ying, YU Ting, ZHANG Qi, et al. Simulation analysis and experimental verification of path following control algorithms[J]. Automobile Technology, 2022(7):15-24.
[17] ZHANG C Y, CHU D F, LIU S D, et al. Trajectory planning and tracking for autonomous vehicle based on state lattice and model predictive control[J]. IEEE Intelligent Transportation Systems Magazine, 2019, 11(2): 29-40.
[18] 赵林峰, 张丁之, 王慧然, 等. 基于改进安全距离模型的人机协同纵向避撞研究[J]. 汽车工程, 2021, 43(4): 588-600. ZHAO Linfeng, ZHANG Dingzhi, WANG Huiran, et al. Study on longitudinal collision avoidance with human-machine cooperation based on improved safety distance model[J]. Automotive Engineering, 2021, 43(4): 588-600.
[19] FENG S, QIAN Y B, WANG Y. Collision avoidance method of autonomous vehicle based on improved artificial potential field algorithm[J]. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 2021, 235(14): 3416-3430.
[20] 赵红专, 吴浩, 卢宁宁, 等. V2X环境下基于MPC算法的弯道区域CACC车队轨迹跟踪控制策略[J]. 控制与决策, 2024, 39(3): 975-984. ZHAO Hongzhuan, WU Hao, LU Ningning, et al. An MPC-based driving trajectory tracking control strategy of CACC fleet in curves under V2X environment[J]. Control and Decision, 2024, 39(3): 975-984.
[1] 韩毅,刘毅超,关甜,兰理文,汤宁业. 改进A*和动态窗口法的无人车路径规划[J]. 山东大学学报 (工学版), 2025, 55(3): 16-24.
[2] 王士柏,孙树敏,程艳,周光奇,关逸飞,刘奕元,张志谦,张祯滨. 计及SOC安全边界的光储联合系统协同控制策略[J]. 山东大学学报 (工学版), 2025, 55(2): 37-44.
[3] 张飞凯,夏拥军,秦剑,游溢,彭飞. 基于A*算法的输电线路组塔施工吊装路径规划方法[J]. 山东大学学报 (工学版), 2024, 54(3): 141-148.
[4] 黄健堃,薛钢,刘延俊,王雨,李厚池,白发刚. 基于改进Bi-RRT算法的机器鱼路径规划方法[J]. 山东大学学报 (工学版), 2024, 54(1): 74-82.
[5] 赵天怀,王目树,潘为刚,康超,秦石铭,徐飞. 挖掘机智能辅助施工系统设计[J]. 山东大学学报 (工学版), 2023, 53(4): 163-172.
[6] 王雨,刘延俊,贾华,薛钢. 基于强化RRT算法的机械臂路径规划[J]. 山东大学学报 (工学版), 2022, 52(6): 123-130.
[7] 张飞凯,黄永忠,李连茂,秦剑,刘晨. 基于Dijkstra算法的货运索道路径规划方法[J]. 山东大学学报 (工学版), 2022, 52(6): 176-182.
[8] 梁启星,李彬,李志,张慧,荣学文,范永. 基于模型预测控制的四足机器人斜坡自适应调整算法与实现[J]. 山东大学学报 (工学版), 2021, 51(3): 37-44.
[9] 肖浩,廖祝华,刘毅志,刘思林,刘建勋. 实际环境中基于深度Q学习的无人车路径规划[J]. 山东大学学报 (工学版), 2021, 51(1): 100-107.
[10] 李彩虹,方春,王志强,夏斌,王凤英. 基于超混沌同步控制的移动机器人全覆盖路径规划[J]. 山东大学学报 (工学版), 2019, 49(6): 63-72.
[11] 周风余, 万方, 焦建成, 边钧健. 家庭陪护机器人自主充电系统研究与设计[J]. 山东大学学报 (工学版), 2019, 49(1): 55-65.
[12] 张强. 核环境多关节蛇形机械臂的运动控制系统设计[J]. 山东大学学报 (工学版), 2018, 48(6): 122-131.
[13] 刘哲,宋锐,邹涛. 基于模型预测控制的磨削机器人末端力跟踪控制算法[J]. 山东大学学报(工学版), 2018, 48(1): 42-49.
[14] 刘彬,张仁津. 一种采用两段粒子群优化的路径规划方法[J]. 山东大学学报(工学版), 2012, 42(1): 12-18.
[15] 严宣辉, 肖国宝*. 基于定长实数路径编码机制的移动机器人路径规划[J]. 山东大学学报(工学版), 2012, 42(1): 59-65.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!