您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(工学版)》

山东大学学报 (工学版) ›› 2025, Vol. 55 ›› Issue (1): 41-50.doi: 10.6040/j.issn.1672-3961.0.2024.191

• 机器学习与数据挖掘 • 上一篇    下一篇

基于双视角网络嵌入聚类集成社区发现算法

王英楠1,郑文萍2,3*,杨贵2   

  1. 1.山西医科大学汾阳学院卫生信息管理系, 山西 汾阳 032200;2.山西大学计算机与信息技术学院, 山西 太原 030006;3.计算智能与中文信息处理教育部重点实验室(山西大学), 山西 太原 030006
  • 发布日期:2025-02-20
  • 作者简介:王英楠(1995— ),男,山西大同人,助教,硕士,主要研究方向为图神经网络、聚类分析. E-mai:1291533544@qq.com. *通信作者简介:郑文萍(1979— ),女,山西榆次人,教授,博士生导师,博士,主要研究方向为复杂网络分析、生物信息学、聚类分析. E-mail: wpzheng@sxu.edu.cn
  • 基金资助:
    国家自然科学基金资助项目(62072292);山西省1331工程资助项目

Community detection algorithm based on dual-view network embedded clustering integration

WANG Yingnan1, ZHENG Wenping2,3*, YANG Gui2   

  1. 1. Fenyang College of Shanxi Medical University, Fenyang 032200, Shanxi, China;
    2. School of Computer and Information Technology, Shanxi University, Taiyuan 030006, Shanxi, China;
    3. Key Laboratory of Computation Intelligence and Chinese Information Processing of Ministry of Education, Shanxi University, Taiyuan 030006, Shanxi, China
  • Published:2025-02-20

摘要: 针对现有网络嵌入方法忽略高阶结构,嵌入过程与社区发现任务独立进行,影响社区发现质量的问题,提出基于双视角网络嵌入聚类集成社区发现算法(community detection algorithm based on dual-view network embedded clustering integration, DNECI),算法包括双视角网络嵌入和聚类集成两部分。双视角网络嵌入模块对网络属性信息与拓扑信息实现自适应融合,保留网络属性信息与拓扑的高阶结构。聚类集成模块包括模块度优化和聚类优化两个组件,模块度优化组件利用高阶拓扑结构得到具有最优模块度的社区结果;聚类优化组件通过自监督聚类方法在嵌入空间得到聚类结果;引入互监督机制使两种视角的社区发现结果具有一致性。在4个真实数据集与15个算法进行对比试验,结果表明,DNECI在准确率和标准互信息至少比最先进的基准算法平均提高2.5%和1.4%,在调整兰德系数和F1分数至少平均提高3.7%和1.7%,具有较好的社区发现效果。

关键词: 社区发现, 网络嵌入, 模块度, 自监督, 高阶结构

中图分类号: 

  • TP391
[1] BLONDEL V D, GUILLAUME J, LAMBIOTTE R. Fast Unfolding of Communities in Large Networks[J]. Journal of Statistical Mechanics: Theory and Experiment, 2008, 2008(10):10008.
[2] NEWMAN M E J. Fast algorithm for detecting community structure in networks[J]. Physical Review E, 2004, 69(6):66133.
[3] CLAUSET A, NEWMAN M E J, MOORE C. Finding community structure in very large networks[J]. Physical Review E, 2004, 70(2): 66111.
[4] RAGHAVAN U N, ALBERT R, KUMARA S. Near linear time algorithm to detect community structures in large-scale networks[J]. Physical Review E, 2007, 76(3): 36106.
[5] BARBER M J, CLARK J W. Detecting network communities by propagating labels under constraints[J].Physical Review E, 2009, 80(2): 26129.
[6] BELKIN M, NIYOGI P. Laplacian eigenmaps and spectral techniques for embedding and clustering[J]. Advances in Neural Information Processing Systems, 2001, 14(6): 585-591.
[7] TENENBAUM J B, DE SILVA V, LANGGORD J C. A global geometric framework for nonlinear dimensionality reduction[J]. Science, 2000, 290(5500): 2319-2323.
[8] ROWEIS S T, SAUL L K. Nonlinear dimensionality reduction by locally linear embedding[J]. Science, 2000(290): 2323-2326.
[9] PEROZZI B, AL-RFOU R,SKIENA S. DeepWalk: online learning of social representations[C] // Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York, USA: ACM, 2014: 701-710.
[10] GROVER A, LESKOVEC J. Node2vec: scalable feature learning for networks[C] // Proceedings of the 22th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York, USA: ACM, 2016: 855-864.
[11] WANG D X, CUI P, ZHU WW. Structural deep network embedding[C] // Proceedings of 22th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York, USA: ACM, 2016: 1225-1234.
[12] CAO SS, LU W, XU Q K. Deep neural networks for learning graph representations[C] // Proceedings of the 30th AAAI Conference on Artificial Intelligence. Palo Alto, USA: AAAI Press, 2016: 1145-1152.
[13] WANG Xiao, CUI Peng, WANG Jing, et al. Community preserving network embedding[C] // Proceedings of the 32th AAAI Conference on Artificial Intelligence. Palo Alto, USA: AAAI press, 2017: 203-209.
[14] YANG C, LIU Z Y, ZHAO D L. Network representation learning with rich text information[C] // Proceedings of the 24th International Joint Conference on Artificial Intelligence. Palo Alto, USA: AAAI Press, 2015: 2111-2117.
[15] HUANG X, LI J D, HU X. Accelerated attributed network embedding[C] // Proceedings of the 2017 SIAM International Conference on Data Mining. Philadelphia, USA: SIAM, 2017: 633-641.
[16] KIPF T N, WELLING M. Semi-supervised classification with graph convolutional networks[C] // International Conference on Learning Representations. Toulon, France: ICLR, 2016: 718-725.
[17] VELICKOVIC P, CUCURULL G, GASANOVA A, et al. Graph attention networks[C] //Proceedings of the Int Conf on Learning Representations. Vancouver, Canada: ICLR, 2018: 485-497.
[18] KIPF T N, WELLING M. Variational graph auto-encoders[C] // Proceedings of the NIPS Workshopon Bayesian Deep Learning. Barcelona, Spain: NIPS, 2016: 1611-1616.
[19] SALEHI A, DAVULCU H. Graph attention auto-encoders [C] // Proceedings of the 32nd IEEE International Conference on Tools with Artificial Intelligence. Piscataway, USA: IEEE, 2020: 989-996.
[20] XIE J Y, GIRSHICK R, FARHADI A. Unsupervised deep embedding for clustering analysis[C] // Proceedings of the 33rd International Conference on Machine Learning. New York, USA: ACM, 2016: 478-487.
[21] WANG C, PAN S R, HU R Q, et al. Attributed graph clustering: a deep attentional embedding approach[C] // Proceedings of 28th International Joint Conference on Artificial Intelligence. San Francisco, USA: Morgan Kaufmann, 2019: 3670-3676.
[22] BO D Y, WANG X, SHI C, et al. Structural deep clustering network[C] // Proceedings of the 29th International World Wide Web Conference. New York, USA: ACM, 2020: 1400-1410.
[23] 郑文萍,王英楠,杨贵.基于双监督网络嵌入的社区发现算法[J]. 模式识别与人工智能, 2022, 35(3): 283-290. ZHENG Wenping, WANG Yingnan, YANG Gui. Dual supervised network embedding based community detection algorithm[J]. Pattern Recognition and Artificial Intelligence, 2022, 35(3): 283-290.
[24] PAN Shirui, HU Ruiqi, JIANG Jing, et al. Adversarially regularized graph auto-encoder for graph embedding[C] // Proceedings of the 27th International Joint Conference on Artificial Intelligence. Melbourne, Australia: IJCAI, 2018: 2609-2615.
[1] 周群颖,隋家成,张继,王洪元. 基于自监督卷积和无参数注意力机制的工业品表面缺陷检测[J]. 山东大学学报 (工学版), 2025, 55(4): 40-47.
[2] 邓文涛,章梦怡,何鹏,曾张帆,李兵. 基于网络表征学习的软件系统演化分析[J]. 山东大学学报 (工学版), 2023, 53(2): 77-86.
[3] 胡军,杨冬梅,刘立,钟福金. 融合节点状态信息的跨社交网络用户对齐[J]. 山东大学学报 (工学版), 2021, 51(6): 49-58.
[4] 林晓炜,陈黎飞. 结构扩展的非负矩阵分解社区发现算法[J]. 山东大学学报 (工学版), 2021, 51(2): 57-64.
[5] 王鑫,陆静雅,王英. 面向推荐的用户兴趣扩展方法[J]. 山东大学学报(工学版), 2017, 47(2): 71-79.
[6] 吕振,李苏雪,张传亭,袁东风. 一种基于结构信息的改进CNM算法[J]. 山东大学学报(工学版), 2017, 47(1): 37-41.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 施来顺,万忠义 . 新型甜菜碱型沥青乳化剂的合成与性能测试[J]. 山东大学学报(工学版), 2008, 38(4): 112 -115 .
[2] 季涛,高旭,孙同景,薛永端,徐丙垠 . 铁路10 kV自闭/贯通线路故障行波特征分析[J]. 山东大学学报(工学版), 2006, 36(2): 111 -116 .
[3] 孙从征,管从胜,秦敬玉,程川 . 铝合金化学镀镍磷合金结构和性能[J]. 山东大学学报(工学版), 2007, 37(5): 108 -112 .
[4] 夏 斌,张连俊 . DS-CDMA UWB系统中基于能量比较的TOA估计算法[J]. 山东大学学报(工学版), 2007, 37(1): 70 -73 .
[5] 胡天亮,李鹏,张承瑞,左毅 . 基于VHDL的正交编码脉冲电路解码计数器设计[J]. 山东大学学报(工学版), 2008, 38(3): 10 -13 .
[6] 田芳1,张颖欣2,张礼3,侯秀萍3,裘南畹3. 新型金属氧化物薄膜气敏元件基材料的开发[J]. 山东大学学报(工学版), 2009, 39(2): 104 -107 .
[7] 王汝贵,蔡敢为 . 两自由度可控平面连杆机构机电耦合系统的超谐波共振分析[J]. 山东大学学报(工学版), 2008, 38(3): 58 -63 .
[8] 世文学 刘卫东 孙永福. 基于DEM的堰塞湖1/3溃决模拟及人员撤离方案研究[J]. 山东大学学报(工学版), 2009, 39(5): 144 -148 .
[9] 孟健, 李贻斌, 李彬. 四足机器人跳跃步态控制方法[J]. 山东大学学报(工学版), 2015, 45(3): 28 -34 .
[10] 许延生,刘兴芳 . 模糊聚类迭代模型在水资源承载能力评价中的应用[J]. 山东大学学报(工学版), 2007, 37(3): 100 -104 .