山东大学学报 (工学版) ›› 2023, Vol. 53 ›› Issue (4): 104-112.doi: 10.6040/j.issn.1672-3961.0.2023.031
于畅1,伍星1*,邓秋菊2
YU Chang1, WU Xing1*, DENG Qiuju2
摘要: 为有效实现工业生产线螺钉缺失问题的智能检测,利用深度学习技术,提出并设计一种螺钉检测算法。该算法包括3个部分:基于目标检测算法实现螺钉自动检测;基于关键点检测的螺钉匹配算法消除零件位置变化影响;构建多视角检测结果融合算法降低零件相互遮挡影响。该算法已应用于多种型号的洗衣机内桶螺钉检测中,试验结果表明其正确率高达99.7%以上。与传统的人工检测方式相比,该算法具有更高的准确率和自动化程度,可以有效减少漏检和误检问题,为工业生产提供新的解决方案。
中图分类号:
| [1] 王丽佳. 变速箱螺钉漏装检测系统开发[D]. 唐山:华北理工大学, 2018. WANG Lijia. Transmission screw packing test system development[D]. Tangshan: North China University of Science and Technology, 2018. [2] 董元发, 袁庆松, 查靓, 等. 钢琴面板螺钉错漏智能视觉检测方法研究[J]. 机械设计与制造, 2019(4): 73-77. DONG Yuanfa, YUAN Qingsong, ZHA Jing, et al. Intelligent visual detection method for screw errors and omissions in assembly of piano panel[J]. Machinery Design and Manufacture, 2019(4): 73-77. [3] 钱磊, 沈峘, 沈一群, 等. 一种汽车照明大灯的安装螺钉缺失检测装置:CN206058303U[P]. 2017-03-29. [4] 刘志昌, 魏泽, 寸毛毛, 等. 一种螺钉缺失检测方法,装置及存储介质:CN201910551548.8[P]. 2019-11-15. [5] ZHAO Z, ZHENG P, XU S, et al. Object detection with deep learning: a review[J]. IEEE Transactions on Neural Networks and Learning Systems, 2019, 30(11): 3212-3232. [6] TIAN Z, SHEN C, CHEN H, et al. FCOS: fully convolutional one-stage object detection[C] //2019 IEEE/CVF International Conference on Computer Vision. Seoul, Korea: IEEE, 2019: 9627-9636. [7] RONNEBERGER O, FISCHER P, BROX T. U-Net:convolutional networks for biomedical image segmentation[C] //Medical Image Computing and Computer-Assisted Intervention-MICCAI 2015: 18th International Conference. Munich, Germany: Springer International Publishing, 2015: 234-241. [8] YANG Q, SHI L, HAN J, et al. Deep convolutional neural networks for rice grain yield estimation at the ripening stage using UAV-based remotely sensedimages[J]. Field Crops Research, 2019, 235: 142-153. [9] 朱安康,王娆芬,张振宇. 基于深度学习的铝材表面缺陷检测系统设计[J]. 传感器与微系统, 2022, 41(8):96-99. ZHU Ankang, WANG Raofen, ZHANG Zhenyu. Design of aluminum surface defect detection system based on deep learning[J]. Transducer and Microsystem Technologies, 2022, 41(8): 96-99. [10] YUAN Z, ZHANG Z, SU H, et al. Vision-based defect detection for mobile phone cover glass using deep neural networks[J]. International Journal of Precision Engineering and Manufacturing, 2018, 19: 801-810. [11] 吴伟浩,李青. 基于改进Yolo v3的电连接器缺陷检测[J]. 传感技术学报, 2020, 33(2): 299-307. WU Weihao, LI Qing. Defect detection of electrical connector based on improved Yolo v3[J]. Chinese Journal of Sensors and Actuators, 2020, 33(2): 299-307. [12] 王淑青,张鹏飞,要若天,等. 基于改进YOLOv5的太阳能电池片表面缺陷检测[J]. 仪表技术与传感器, 2022(5): 111-116. WANG Shuqing, ZHANG Pengfei, YAO Ruotian, et al. Surface defect detection of solar cell based on improved YOLOv5[J]. Instrument Technique and Sensor, 2022(5): 111-116. [13] KUANG H, DING Y, LI R, et al. Defect detection of bamboo strips based on LBP and GLCM features by using SVM classifier[C] //2018 Chinese Control and Decision Conference(CCDC). Shenyang, China: IEEE, 2018: 3341-3345. [14] LI X, ZHU J, SHI H, et al. Surface defect detection of seals based on K-means clustering algorithm and particle swarm optimization[J]. Scientific Programming, 2021, 2021: 3965247. [15] 李军华,权小霞,汪宇玲. 多特征融合的瓷砖表面缺陷检测算法研究[J]. 计算机工程与应用, 2020, 56(15): 191-198. LI Junhua, QUAN Xiaoxia, WANG Yuling. Research on defect detection algorithm of ceramic tile surface with multi-feature fusion[J]. Computer Engineering and Applications, 2020, 56(15): 191-198. [16] LIN T, DOLLÁR P, GIRSHICK R, et al. Feature pyramid networks for object detection[C] //2017 IEEE Conference on Computer Vision and Pattern Recognition. Honolulu, HI, USA: IEEE, 2017: 2117-2125. [17] HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[C] //2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, NV, USA: IEEE, 2016: 770-778. |
| [1] | 李常刚,李宝亮,曹永吉,王佳颖. 人工智能在电力系统潮流计算中的应用综述及展望[J]. 山东大学学报 (工学版), 2025, 55(5): 1-17. |
| [2] | 索大翔,李波. 细粒度特征增强与尺寸匹配的光伏缺陷检测[J]. 山东大学学报 (工学版), 2025, 55(4): 9-17. |
| [3] | 周群颖,隋家成,张继,王洪元. 基于自监督卷积和无参数注意力机制的工业品表面缺陷检测[J]. 山东大学学报 (工学版), 2025, 55(4): 40-47. |
| [4] | 薛冰冰,王勇,杨维浩,王川,于迪,王旭. 基于ETC收费数据的高速公路交通流数据修复及实时预测[J]. 山东大学学报 (工学版), 2025, 55(3): 58-71. |
| [5] | 董明书,陈俐企,马川义,张珠皓,孙仁娟,管延华,庄培芝. 沥青路面内部裂缝雷达图像智能判识算法研究[J]. 山东大学学报 (工学版), 2025, 55(3): 72-79. |
| [6] | 聂秀山,赵润虎,宁阳,刘新锋. 开放词汇目标检测方法综述[J]. 山东大学学报 (工学版), 2025, 55(1): 1-14. |
| [7] | 张曼,孙凯军,李翔,孙纪舟. 融合FasterNet和RepVGG的安全设备佩戴检测方法[J]. 山东大学学报 (工学版), 2024, 54(6): 19-28. |
| [8] | 常新功,苏敏惠,周志刚. 基于进化集成的图神经网络解释方法[J]. 山东大学学报 (工学版), 2024, 54(4): 1-12. |
| [9] | 索大翔,李波. 基于Gromov-Wasserstein最优传输的输电线路小目标检测方法[J]. 山东大学学报 (工学版), 2024, 54(3): 22-29. |
| [10] | 宋辉,张轶哲,张功萱,孟元. 基于类权重和最小化预测熵的测试时集成方法[J]. 山东大学学报 (工学版), 2024, 54(3): 36-43. |
| [11] | 刘新,刘冬兰,付婷,王勇,常英贤,姚洪磊,罗昕,王睿,张昊. 基于联邦学习的时间序列预测算法[J]. 山东大学学报 (工学版), 2024, 54(3): 55-63. |
| [12] | 聂秀山,巩蕊,董飞,郭杰,马玉玲. 短视频场景分类方法综述[J]. 山东大学学报 (工学版), 2024, 54(3): 1-11. |
| [13] | 陈晓燕,王川,齐明杰,张宁,林晓龙,霍延强,刘世杰,田源. 采用雷视融合方法的灌溉风险区异物入侵风险预警[J]. 山东大学学报 (工学版), 2024, 54(3): 115-121. |
| [14] | 李璐,张志军,范钰敏,王星,袁卫华. 面向冷启动用户的元学习与图转移学习序列推荐[J]. 山东大学学报 (工学版), 2024, 54(2): 69-79. |
| [15] | 高泽文,王建,魏本征. 基于混合偏移轴向自注意力机制的脑胶质瘤分割算法[J]. 山东大学学报 (工学版), 2024, 54(2): 80-89. |
|