山东大学学报 (工学版) ›› 2023, Vol. 53 ›› Issue (2): 70-76.doi: 10.6040/j.issn.1672-3961.0.2022.086
宋佳芮1,2,陈艳平1,2*,王凯1,2,黄瑞章1,2,秦永彬1,2
SONG Jiarui1,2, CHEN Yanping1,2*, WANG Kai1,2, HUANG Ruizhang1,2, QIN Yongbin1,2
摘要: 针对现有命名实体识别方法存在的语义信息获取不全面问题,提出基于Affix-Attention的命名实体识别语义补充方法。将句子和句子中每个单词对应的词缀输入到编码层,使用Bi-LSTM提取上下文特征。在编码层设计特征融合模块、建模文本特征与词缀特征的对应关系,使用Affix-Attention同时关注文本信息和词缀信息进行语义补充。解码层使用CRF层得到目标序列。在生物医学领域的JNLPBA-2004和BC2GM基准数据集上的试验结果综合评价指标F1达到81.73%、84.73%;在公共数据集CONLL-2003中试验结果综合评价指标F1达到91.35%。试验结果表明,本研究方法能够有效获取词的内部语义特征,融合文本信息和词缀信息,达到语义补充的效果,提升命名实体识别的性能。
中图分类号:
| [1] | 刘浏, 王东波. 命名实体识别研究综述[J]. 情报学报, 2018, 37(3): 329-340. LIU Liu, WANG Dongbo. A review of research on named entity recognition[J]. Journal of Information, 2018, 37(3): 329-340. |
| [2] | 孙镇, 王惠临. 命名实体识别研究进展综述[J]. 现代图书情报技术, 2010(6): 42-47. SUN Zhen, WANG Huilin. A review of the research progress of named entity recognition[J]. Modern Library and Lnformation Technology, 2010(6): 42-47. |
| [3] | 江千军, 桂前进, 王磊,等. 命名实体识别技术研究进展综述[J]. 电力信息与通信技术, 2022, 20(2): 15-24 JIANG Qianjun, GUI Qianjin, WANG Lei, et al. A review of the research progress of named entity recognition technology[J] Power Information and Communication Technology, 2022, 20(2): 15-24. |
| [4] | CHITICARIU L, KRISHNAMURTHY R, LI Y, et al. Domain adaptation of rule-based annotators for named-entity recognition tasks[C] //Proceedings of the 2010 Conference on Empirical Methods in Natural Language Processing. Piscataway, USA: IEEE Computer Society, 2010: 1002-1012. |
| [5] | SHEN D, ZHANG J, ZHOU G, et al. Effective adaptation of hidden markov model-based named entity recognizerfor biomedical domain[C] //Proceedings of the ACL 2003 Workshop on Natural Language Processing in Biomedicine. Sapporo, Japan: ACL, 2003: 49-56. |
| [6] | ZHANG J, SHEN D, ZHOU G, et al. Enhancing hmm-based biomedical named entity recognition by studying special phenomena[J]. Journal of Biomedical Informatics, 2004, 37(6): 411-422. |
| [7] | HUANG Z, XU W, YU K. Bidirectional LSTM-CRF models for sequence tagging[EB/OL].(2015-08-09)[2021-08-07]. https://arxiv.org/pdf/1508.01991. |
| [8] | SANG E F, DE Meulder F. Introduction to the CoNLL-2003 shared task: language-independent name dentity recognition[EB/OL].(2003-01-05)[2021-09-12].http://www.ling.helsinki.fi/kit/2008s/clt350/docs/CoNLL-2003-Entities. |
| [9] | JU M, MIWA M, ANANIADOU S. A neural layered model for nested named entity recognition[C] //Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies: Volume 1(Long Papers). New Orleans, Louisiana: ACL, 2018: 1446-1459. |
| [10] | SMITH L, TANABE L K, KUO C J, et al. Overview of BioCreative II gene mention recognition[J]. Genome Biology, 2008, 9(2): 1-19. |
| [11] | SETTLES B. Biomedical named entity recognition using conditional random fields and rich feature sets[C] //Proceedings of the International Joint Workshop on Natural Language Processing in Biomedicine and its Applications(NLPBA/BioNLP). Geneva, Switzerland: [s.n.] , 2004: 107-110. |
| [12] | WANG X, YANG C, GUAN R. A comparative study for biomedical named entity recognition[J]. International Journal of Machine Learning and Cybernetics, 2018, 9(3): 373-382. |
| [13] | ZHOU G D, SU J. Exploring deep knowledge resources in biomedical name recognition[C] //Proceedings of the International Joint: Workshop on Natural Language Processing in Biomedicine and its Applications(NLPBA/BioNLP). Geneva, Switzerland: [s.n.] , 2004: 99-102. |
| [14] | LIAO Z, WU H. Biomedical named entity recognition based on skip-chain Crfs[C] //2012 International Conference on Industrial Control and Electronics Engin-eering. Piscataway, USA: IEEE Computer Society, 2012: 1495-1498. |
| [15] | TANG B, CAO H, WANG X, et al. Evaluating word representation features in biomedical named entity recognition tasks[J]. BioMed Research International, 2014: 1-6. |
| [16] | CHANG F X, GUO J, XU W R, et al. Application of word embeddings in biomedical named entity recognition tasks[J]. Journal of Digital Information Management, 2015, 13(5): 321-327. |
| [17] | YAO L, LIU H, LIU Y, et al. Biomedical named entity recognition based on deep neutral network[J]. Int J Hybrid Inf Technol, 2015, 8(8): 279-288. |
| [18] | LI L, JIN L, JIANG Y, et al. Recognizing biomedical named entities based on the sentence vector/twin word embedding conditioned bidirectional LSTM[C] // Chinese Computational Linguistics and Natural Language Processing Based on Naturally Annotated Big Data. Yantai, China: Springer International Publishing, 2016: 165-176. |
| [19] | LI L, GUO Y K. Biomedical named entity recognition with CNN-BLSTM-CRF[J]. Journal of Chinese Information Processing, 2018, 32(1): 116-122. |
| [20] | NING G, BAI Y. Biomedical named entity recognition based on Glove-BLSTM-CRF model[J]. Journal of Computational Methods in Sciences and Engineering, 2021, 21(1), 125-133. |
| [21] | XU Y, HUANG H, FENG C, et al. A supervised multi-head self-attention network for nested named entity recognition[C] //Proceedings of the AAAI Conference on Artificial Intelligence. New Orleans, Louisiana: ACL, 2021, 35(16): 14185-14193. |
| [22] | LIU T, YAO J G, LIN C Y. Towards improving neural named entity recognition with gazetteers[C] //Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Florence, Italy: ACL, 2019: 5301-5307. |
| [23] | LE A, MORITA H, IWAKURA T. Learning entity-likeness with multiple approximate matches for biomedical NER[C] //Proceedings of the International Conference on Recent Advances in Natural Language Processing(RANLP 2021).[S.l.] : [s.n.] ,2021: 1040-1049. |
| [24] | KURU O, CAN O A, YURET D. Char NER: Character-level named entity recognition[C] // Proceedings of COLING 2016, the 26th International Conference on Computational Linguistics: Technical Papers. Osaka, Japan: The COLING 2016 Organizing Committee, 2016: 911-921. |
| [25] | SHEN Y, YUN H, LIPTON Z C, et al. Deep active learning for named entity recognition[EB/OL].(2018-02-04)[2021-09-10].https://arxiv.org/pdf/1707.05928. |
| [26] | COLLOBERT R, WESTON J, BOTTOU L, et al. Natural language processing(almost)from scratch[J]. Journal of Machine Learning Research, 2011, 12(ARTICLE):2493-2537. |
| [27] | STRUBELL E, VERGA P, BELANGER D, et al. Fast and accurate entity recognition with iterated dilated convolutions[EB/OL].(2017-07-22)[2021-09-13]. https://arxiv.org/pdf/1702.02098. |
| [28] | LAMPLE G, BALLESTEROS M, SUBRAMANIAN S, et al. Neural architectures for named entity recognition[EB/OL].(2016-04-07)[2021-09-13]. https://arxiv.org/pdf/1603.01360. |
| [29] | XU M, JIANG H. A FOFE-based local detection approach for named entity recognition and mention detection[EB/OL].(2016-04-07)[2021-09-17]. https://arxiv.org/pdf/1603.01360. |
| [30] | YANG Z, SALAKHUTDINOV R, COHEN W. Multi-task cross-lingual sequence tagging from scratch[EB/OL].(2016-08-09)[2021-09-22]. https://arxiv.org/pdf/1603.06270. |
| [31] | MA X, HOVY E. End-to-end sequence labeling via bi-directional lstm-cnns-crf[EB/OL].(2016-05-29)[2021-09-25]. https://arxiv.org/pdf/1603.01354. |
| [1] | 王禹鸥,苑迎春,何振学,何晨. 融合多特征和多头自注意力机制的高校学业命名实体识别[J]. 山东大学学报 (工学版), 2025, 55(6): 35-44. |
| [2] | 李常刚,李宝亮,曹永吉,王佳颖. 人工智能在电力系统潮流计算中的应用综述及展望[J]. 山东大学学报 (工学版), 2025, 55(5): 1-17. |
| [3] | 周遵富,张乾,石计亮,岳诗琴. 基于纹理和结构交互的人脸图像修复[J]. 山东大学学报 (工学版), 2025, 55(4): 18-28. |
| [4] | 吴秋兰,尚素雅,张家辉,孙守鑫,张峰,周波,高峥,史文宠. 基于多尺度特征融合的马铃薯疮痂病图像语义分割方法[J]. 山东大学学报 (工学版), 2025, 55(4): 1-8. |
| [5] | 周群颖,隋家成,张继,王洪元. 基于自监督卷积和无参数注意力机制的工业品表面缺陷检测[J]. 山东大学学报 (工学版), 2025, 55(4): 40-47. |
| [6] | 薛冰冰,王勇,杨维浩,王川,于迪,王旭. 基于ETC收费数据的高速公路交通流数据修复及实时预测[J]. 山东大学学报 (工学版), 2025, 55(3): 58-71. |
| [7] | 董明书,陈俐企,马川义,张珠皓,孙仁娟,管延华,庄培芝. 沥青路面内部裂缝雷达图像智能判识算法研究[J]. 山东大学学报 (工学版), 2025, 55(3): 72-79. |
| [8] | 李丰,文益民. 融合多尺度视觉和文本语义特征的图像描述生成算法[J]. 山东大学学报 (工学版), 2025, 55(3): 80-87. |
| [9] | 王禹鸥,苑迎春,何振学,王克俭. 改进RoBERTa、多实例学习和双重注意力机制的关系抽取方法[J]. 山东大学学报 (工学版), 2025, 55(2): 78-87. |
| [10] | 刘全金,嵇文,胡浪涛,黄汇磊,杨瑞,李翔,高泽文,魏本征. 基于双解码器的医学图像分割模型[J]. 山东大学学报 (工学版), 2024, 54(6): 8-18. |
| [11] | 邹正标,刘毅志,廖祝华,赵肄江. 动态交通流量预测的时空注意力图卷积网络[J]. 山东大学学报 (工学版), 2024, 54(5): 50-61. |
| [12] | 常新功,苏敏惠,周志刚. 基于进化集成的图神经网络解释方法[J]. 山东大学学报 (工学版), 2024, 54(4): 1-12. |
| [13] | 葛一飞,艾孜尔古丽,陈德刚. 融合数据增强和知识迁移的汉维跨语言命名实体识别[J]. 山东大学学报 (工学版), 2024, 54(4): 67-75. |
| [14] | 索大翔,李波. 基于Gromov-Wasserstein最优传输的输电线路小目标检测方法[J]. 山东大学学报 (工学版), 2024, 54(3): 22-29. |
| [15] | 宋辉,张轶哲,张功萱,孟元. 基于类权重和最小化预测熵的测试时集成方法[J]. 山东大学学报 (工学版), 2024, 54(3): 36-43. |
|