山东大学学报 (工学版) ›› 2023, Vol. 53 ›› Issue (2): 1-10.doi: 10.6040/j.issn.1672-3961.0.2022.136
• 机器学习与数据挖掘 • 下一篇
Caihui LIU(
),Qi ZHOU*(
),Xiaowen YE
摘要:
针对现有入侵检测算法中特征提取不充分、未考虑特征权重的影响、模型分类不够精确等问题,提出一种基于改进ReliefF算法的入侵检测模型。通过优化入侵数据特征权重计算,提出改进的ReliefF算法;根据计算特征的Pearson相关系数,建立特征相关性量表。只保留其中一个相关性高的特征,以实现特征的二次优化;对最优特征子集分别使用决策树(decision tree,DT)、k-最近邻(k-nearest neighbor,KNN)、随机森林(random forest,RF)、朴素贝叶斯(naive bayes,NB)和支持向量机(support vector machine,SVM)5种分类器评价该方法的分类性能和准确性。在NSL-KDD和UNSW-NB15两个数据集上的试验结果表明,该方法不仅具有较好的检测性能,还能有效降低特征维度,对分类器的计算复杂度有积极的影响。
中图分类号:
| 1 |
SULTANA N , CHILAMKURTI N , PENG W , et al. Survey on SDN based network intrusion detection system using machine learning approaches[J]. Peer-to-Peer Networking and Applications, 2019, 12 (2): 493- 501.
doi: 10.1007/s12083-017-0630-0 |
| 2 | SVENMARCK P, LUOTSINEN L, NILSSON M, et al. Possibilities and challenges for artificial intelligence in military applications[C]//Proceedings of the NATO Big Data and Artificial Intelligence for Military Decision Making Specialists' Meeting. Bordeaux, France: Computer Science, 2018: 1-16. |
| 3 | STAMPAR M, FERTALJ K. Artificial intelligence in network intrusion detection[C]//Proceedings of 2015 38th International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO). Opatija, Croatia: IEEE, 2015: 1318-1323. |
| 4 | LEE W, STOLFO S J, CHAN P K, et al. Real time data mining-based intrusion detection[C]//Proceedings of DARPA Information Survivability Conference and Exposition Ⅱ(DISCEX'01). Anaheim, USA: IEEE, 2001: 89-100. |
| 5 |
KUMAR G , KUMAR K , SACHDEVA M . The use of artificial intelligence based techniques for intrusion detection: a review[J]. Artificial Intelligence Review, 2010, 34 (4): 369- 387.
doi: 10.1007/s10462-010-9179-5 |
| 6 | MEHDI S A, KHALID J, KHAYAM S A. Revisiting traffic anomaly detection using software defined networking[C]//Proceedings of International Workshop on Recent Advances in Intrusion Detection. Heidelberg, Germany: Springer, 2011: 161-180. |
| 7 | LAZAREVIC A, ERTOZ L, KUMAR V, et al. A comparative study of anomaly detection schemes in network intrusion detection[C]//Proceedings of the 2003 SIAM International Conference on Data Mining. Philadelphia, USA: SIAM, 2003: 25-36. |
| 8 |
YE N , ZHANG Y , BORROR C M . Robustness of the Markov-chain model for cyber-attack detection[J]. IEEE Transactions on Reliability, 2004, 53 (1): 116- 123.
doi: 10.1109/TR.2004.823851 |
| 9 | NOVIKOV D, YAMPOLSKIY R V, REZNIK L. Anomaly detection based intrusion detection[C]//Proceedings of Third International Conference on Information Technology: New Generations (ITNG'06). Las Vegas, USA: IEEE, 2006: 420-425. |
| 10 | WANG Wei , DAI Hong , ZHAO Siqi . Intrusion detection method based on feature optimization and BP neural[J]. Computer Engineering and Design, 2021, 42 (10): 2755- 2761. |
| 11 |
TOOSI A N , KAHANI M . A new approach to intrusion detection based on an evolutionary soft computing model using neuro-fuzzy classifiers[J]. Computer Communications, 2007, 30 (10): 2201- 2212.
doi: 10.1016/j.comcom.2007.05.002 |
| 12 | LAHRE M K , DHAR M T , SURESH D , et al. Analyze different approaches for ids using kdd 99 data set[J]. International Journal on Recent and Innovation Trends in Computing and Communication, 2013, 1 (8): 645- 651. |
| 13 |
ZHANG Z , SHEN H . Application of online-training SVMs for real-time intrusion detection with different considerations[J]. Computer Communications, 2005, 28 (12): 1428- 1442.
doi: 10.1016/j.comcom.2005.01.014 |
| 14 | TAN S. An intrusion detection method based on stacked autoencoder and support vector machine[C]//Proceedings of Journal of Physics: Conference Series. Xi'an, China: IOP, 2020: 1-7. |
| 15 |
KHRAISAT A , GONDAL I , VAMPLEW P , et al. Hybrid intrusion detection system based on the stacking ensemble of c5 decision tree classifier and one class support vector machine[J]. Electronics, 2020, 9 (1): 173- 191.
doi: 10.3390/electronics9010173 |
| 16 |
LIU W , CI L L , LIU L P . A new method of fuzzy support vector machine algorithm for intrusion detection[J]. Applied Sciences, 2020, 10 (3): 1065- 1085.
doi: 10.3390/app10031065 |
| 17 |
ILGUN K , KEMMERER R A , PORRAS P A . State transition analysis: a rule-based intrusion detection approach[J]. IEEE Transactions on Software Engineering, 1995, 21 (3): 181- 199.
doi: 10.1109/32.372146 |
| 18 | LEE W, STOLFO S J, MOK K W. A data mining framework for building intrusion detection models[C]//Proceedings of the 1999 IEEE Symposium on Security and Privacy. Oakland, USA: IEEE, 1999: 120-132. |
| 19 | LOHIYA R , THAKKAR A . Intrusion detection using deep neural network with antirectifier layer[M]. Singapore: Springer, 2021: 89- 105. |
| 20 | LI L H, AHMAD R, TSAI W C, et al. A feature selection based DNN for intrusion detection system[C]//Proceedings of 2021 15th International Conference on Ubiquitous Information Management and Communication(IMCOM). Seoul, Korea: IEEE, 2021: 1-8. |
| 21 |
FARRAHI S V , AHMADZADEH M . KCMC: a hybrid learning approach for network intrusion detection using K-means clustering and multiple classifiers[J]. International Journal of Computer Applications, 2015, 124 (9): 18- 23.
doi: 10.5120/ijca2015905365 |
| 22 | PALIWAL S , GUPTA R . Denial-of-service, probing & remote to user (R2L) attack detection using genetic algorithm[J]. International Journal of Computer Applications, 2012, 60 (19): 57- 62. |
| 23 | PENG K , LEUNG V , ZHENG L , et al. Intrusion detection system based on decision tree over big data in fog environment[J]. Wireless Communications and Mobile Computing, 2018, 2018 (1): 1- 10. |
| 24 | VIMALKUMAR K, RADHIKA N. A big data framework for intrusion detection in smart grids using apache spark[C]//Proceedings of 2017 International Conference on Advances in Computing, Communications and Infor-matics. Udupi, India: IEEE, 2017: 198-204. |
| 25 | GUO K, SUI L, QIU J, et al. From model to FPGA: software-hardware co-design for efficient neural network acceleration[C]//Proceedings of 2016 IEEE Hot Chips 28 Symposium (HCS). Cupertino, USA: IEEE, 2016: 1-27. |
| 26 |
RAJAGOPAL S , KUNDAPUR P P , HAREESHA K S . A stacking ensemble for network intrusion detection using heterogeneous datasets[J]. Security and Communication Networks, 2020, 2020 (1): 1- 9.
doi: 10.1016/S1353-4858(20)30001-5 |
| 27 |
BALAKRISHNAN S , VENKATALAKSHMI K , KANNAN A . Intrusion detection system using feature selection and classification technique[J]. International Journal of Computer Science and Application, 2014, 3 (4): 145- 151.
doi: 10.14355/ijcsa.2014.0304.02 |
| 28 | ZHANG Y, REN X, ZHANG J. Intrusion detection method based on information gain and ReliefF feature selection[C]// Proceedings of 2019 International Joint Conference on Neural Networks (IJCNN). Budapest, Hungary: IEEE, 2019: 1-5. |
| 29 | ZHANG J, ZHANG Y, LI K. A network intrusion detection model based on the combination of ReliefF and Borderline-SMOTE[C]//Proceedings of the 2020 4th High Performance Computing and Cluster Technologies Conference & 2020 3rd International Conference on Big Data and Artificial Intelligence. New York, USA: Association for Computing Machinery, 2020: 199-203. |
| 30 | KIRA K, RENDELL L A. The feature selection problem: traditional methods and a new algorithm[C]//Proceedings of the Tenth National Conference on Artificial Intelligence. San Jose, California: AAAI, 1992: 129-134. |
| 31 | KONONENKO L . Estimating attributes: analysis and extensions of Relief[J]. Lecture Notes in Computer Science, 1994, 784 (1): 171- 182. |
| 32 | 马超. 基于ReliefF和改进乌鸦搜索优化的并行入侵检测方法[J]. 计算机应用研究, 2019, 36 (10): 3063- 3068. |
| MA Chao . Parallel network intrusion detection method based on ReliefF and improved crow search optimization[J]. Application Research of Computers, 2019, 36 (10): 3063- 3068. | |
| 33 |
SUN L , KONG X , XU J , et al. A hybrid gene selection method based on ReliefF and ant colony optimization algorithm for tumor classification[J]. Scientific Reports, 2019, 9 (1): 1- 14.
doi: 10.1038/s41598-018-37186-2 |
| 34 | BENESTY J , CHEN J , HUANG Y , et al. Pearson correlation coefficient[M]. Berlin, Germany: Springer, 2009: 1- 4. |
| 35 | REVATHI S , MALATHI A . A detailed analysis on NSL-KDD dataset using various machine learning techniques for intrusion detection[J]. International Journal of Engineering Research & Technology, 2013, 2 (12): 1848- 1853. |
| 36 | ROY A, SINGH K J. Multi-classification of UNSW-NB15 dataset for network anomaly detection system[C]//Proceedings of International Conference on Communication and Computational Technologies. Singapore: Springer, 2021: 429-451. |
| 37 | 张师鹏, 李永忠, 杜祥通. 基于半监督学习和三支决策的入侵检测模型[J]. 计算机应用, 2021, 41 (9): 2602- 2608. |
| ZHANG Shipeng , LI Yongzhong , DU Xiangtong . Intrusion detection model based on semi-supervised learning and three-way decision[J]. Journal of Computer Applications, 2021, 41 (9): 2602- 2608. | |
| 38 | 吴启睿, 黄树成. 结合卷积神经网络和三支决策的入侵检测算法[J]. 计算机工程与应用, 2022, 58 (13): 119- 127. |
| WU Qirui , HUANG Shucheng . Intrusion detection algorithm combining convolutional neural network and three-branch decision[J]. Computer Engineering and Applications, 2022, 58 (13): 119- 127. | |
| 39 | 王振东, 张林, 杨书新, 等. 面向入侵检测的Taylor神经网络构建与分析[J/OL]. 计算机科学与探索. (2021-09-09)[2021-11-14]. http://kns.cnki.net/kcms/detail/11.5602.TP.20210909.0906.002.html. |
| 40 | 朱世松, 巴梦龙, 王辉, 等. 基于NBSR模型的入侵检测技术[J]. 计算机工程与科学, 2020, 42 (3): 427- 433. |
| ZHU Shisong , BA Menglong , WANG Hui , et al. An intrusion detection technology based on NBSR model[J]. Computer Engineering & Science, 2020, 42 (3): 427- 433. |
| [1] | 唐杰烽,张佳,龙锦益. 基于全局冗余最小的快速多标签特征选择方法[J]. 山东大学学报 (工学版), 2025, 55(6): 21-34. |
| [2] | 吴正健,吾尔尼沙·买买提,杨耀威,阿力木江·艾沙,库尔班·吾布力. 基于DRCoALTP的印刷体文档图像多文种识别方法[J]. 山东大学学报 (工学版), 2025, 55(1): 51-57. |
| [3] | 白琳,俱通,王浩,雷明珠,潘晓英. 面向不平衡数据的提升均衡集成学习算法[J]. 山东大学学报 (工学版), 2024, 54(4): 59-66. |
| [4] | 陈晓江,杨晓奇,陈广豪,刘伍颖. 混合BERT和宽度学习的低时间复杂度短文本分类[J]. 山东大学学报 (工学版), 2024, 54(4): 51-58. |
| [5] | 宋辉,张轶哲,张功萱,孟元. 基于类权重和最小化预测熵的测试时集成方法[J]. 山东大学学报 (工学版), 2024, 54(3): 36-43. |
| [6] | 聂秀山,巩蕊,董飞,郭杰,马玉玲. 短视频场景分类方法综述[J]. 山东大学学报 (工学版), 2024, 54(3): 1-11. |
| [7] | 徐金华,罗义凯,李昱燃,李岩. 基于时频分解与深度学习的轨道客流预测[J]. 山东大学学报 (工学版), 2024, 54(2): 60-68. |
| [8] | 马坤,刘筱云,李乐平,纪科,陈贞翔,杨波. 用于意图识别的自适应多标签信息学习模型[J]. 山东大学学报 (工学版), 2024, 54(1): 45-51. |
| [9] | 于泓,杜娟,魏琳,张利. 计及行为特征的市场化用户电量数据拟合方法[J]. 山东大学学报 (工学版), 2023, 53(4): 113-119. |
| [10] | 李颖,王建坤. 基于监督图正则化和信息融合的轻度认知障碍分类方法[J]. 山东大学学报 (工学版), 2023, 53(4): 65-73. |
| [11] | 张喜龙,韩萌,陈志强,武红鑫,李慕航. 动态集成选择的不平衡漂移数据流Boosting分类算法[J]. 山东大学学报 (工学版), 2023, 53(4): 83-92. |
| [12] | 许传臻,袭肖明,李维翠,孙仪,杨璐. 基于自适应多分辨率特征学习的CNV分型网络[J]. 山东大学学报 (工学版), 2022, 52(4): 69-75. |
| [13] | 袁高腾,周晓峰,郭宏乐. 基于特征选择算法的ECG信号分类[J]. 山东大学学报 (工学版), 2022, 52(4): 38-44. |
| [14] | 孟令灿,聂秀山,张雪. 基于遮挡目标去除的公交车拥挤度分类算法[J]. 山东大学学报 (工学版), 2022, 52(4): 83-88. |
| [15] | 孙志巍,宋明阳,潘泽华,景丽萍. 上下文感知的判别式主题模型[J]. 山东大学学报 (工学版), 2022, 52(4): 131-138. |
|