您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(工学版)》

山东大学学报(工学版) ›› 2013, Vol. 43 ›› Issue (5): 31-38.

• 机器学习与数据挖掘 • 上一篇    下一篇

基于可变基函数和GentleAdaBoost的小波神经网络研究

李翔1,朱全银1,王尊2   

  1. 1. 淮阴工学院计算机工程学院, 江苏 淮安 223003;
    2. 南京理工大学电子工程与光电技术学院, 江苏 南京 210094
  • 收稿日期:2013-06-28 出版日期:2013-10-20 发布日期:2013-06-28
  • 作者简介:李翔(1980- ), 男, 江苏淮安人,讲师, 硕士,主要研究方向为机器学习、人工神经网络. E-mail: largepearstudio@gmail.com
  • 基金资助:

    国家星火计划资助项目(2011GA690190); 江苏省属高校自然科学重大基础研究资助项目(11KJA460001)

Research of wavelet neural network based on variable basis functions and GentleAdaBoost algorithm

LI Xiang1, ZHU Quan-yin1, WANG Zun2   

  1. 1. Faculty of Computer Engineering, Huaiyin Institute of Technology, Huaian 223003, China;
    2.  School of Electronic Engineering and Optoelectronic Technology, Nanjing University of Science and Technology,
    Nanjing 210094, China
  • Received:2013-06-28 Online:2013-10-20 Published:2013-06-28

摘要:

针对传统小波神经网络(wavelet neural network, WNN)受隐含层节点数影响大、网络误差易陷入局部极小、预测结果不稳定的问题,提出使用GentleAdaBoost和小波神经网络相结合的方法,提高网络预测精度和泛化能力。该方法首先对样本数据进行预处理并初始化测试数据分布权值;然后通过选取不同的隐含层节点数、小波基函数构造出不同类型的小波神经网络弱预测器序列并对样本数据进行反复训练;最后使用GentleAdaBoost算法将得到的多个小波神经网络弱预测器组成新的强预测器并进行回归预测。对UCI数据库中数据集进行仿真实验,结果表明,本方法比传统小波神经网络预测平均误差减少40%以上,有效地提高了神经网络预测精度,为小波神经网络应用提供借鉴。

关键词: 基函数, 强预测器, GentleAdaBoost算法, 小波神经网络, 迭代算法, 回归预测

Abstract:

In view that the traditional wavelet neural network (WNN) was affected largely by the number of hidden layer nodes, easy to fall into local minimum and had unstable forecast results, a method of combining the GentleAdaBoost algorithm with WNN was put forward to improve the forecasting accuracy and generalization ability. First, this method performed the pretreatment for the historical data and initialized the distribution weights of test data. Second, different hidden layer nodes and wavelet basis functions were selected randomly to construct weak predictors of WNN and trained the sample data repeatedly. Finally, the multiple weak predictors of WNN were used to form a new strong predictor by GentleAdaBoost algorithm for regression forecasting. A simulation experiment using datasets from the UCI database was carried out. The results showed that this method had reduced the average error value by more than 40% compared to the traditional WNN, improved the forecasting accuracy of neural network, and could provide references for the WNN forecasting.

Key words: basis functions, strong predictor, Gentle AdaBoost algorithm, wavelet neural network, iterative algorithm, regression forecasting

中图分类号: 

  • TP183
[1] 孟银凤,李庆方. 基于多元函数主成分表示的识别学习[J]. 山东大学学报 (工学版), 2022, 52(3): 1-8.
[2] 曹雅,邓赵红,王士同. 基于单调约束的径向基函数神经网络模型[J]. 山东大学学报(工学版), 2018, 48(3): 127-133.
[3] 吴建萍,姜斌,刘剑慰. 基于小波包信息熵和小波神经网络的异步电机故障诊断[J]. 山东大学学报(工学版), 2017, 47(5): 223-228.
[4] 翟俊海,张素芳,胡文祥,王熙照. 核心集径向基函数极限学习机[J]. 山东大学学报(工学版), 2016, 46(2): 1-5.
[5] 朱跃龙,李士进,范青松,万定生. 基于小波神经网络的水文时间序列预测[J]. 山东大学学报(工学版), 2011, 41(4): 119-124.
[6] 李婧瑜,李歧强,侯海燕,杨立才 . 基于遗传算法的小波神经网络交通流预测[J]. 山东大学学报(工学版), 2007, 37(2): 109-112 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李 侃 . 嵌入式相贯线焊接控制系统开发与实现[J]. 山东大学学报(工学版), 2008, 38(4): 37 -41 .
[2] 来翔 . 用胞映射方法讨论一类MKdV方程[J]. 山东大学学报(工学版), 2006, 36(1): 87 -92 .
[3] 余嘉元1 , 田金亭1 , 朱强忠2 . 计算智能在心理学中的应用[J]. 山东大学学报(工学版), 2009, 39(1): 1 -5 .
[4] 陈瑞,李红伟,田靖. 磁极数对径向磁轴承承载力的影响[J]. 山东大学学报(工学版), 2018, 48(2): 81 -85 .
[5] 王波,王宁生 . 机电装配体拆卸序列的自动生成及组合优化[J]. 山东大学学报(工学版), 2006, 36(2): 52 -57 .
[6] 张英,郎咏梅,赵玉晓,张鉴达,乔鹏,李善评 . 由EGSB厌氧颗粒污泥培养好氧颗粒污泥的工艺探讨[J]. 山东大学学报(工学版), 2006, 36(4): 56 -59 .
[7] Yue Khing Toh1 , XIAO Wendong2 , XIE Lihua1 . 基于无线传感器网络的分散目标跟踪:实际测试平台的开发应用(英文)[J]. 山东大学学报(工学版), 2009, 39(1): 50 -56 .
[8] 孙炜伟,王玉振. 考虑饱和的发电机单机无穷大系统有限增益镇定[J]. 山东大学学报(工学版), 2009, 39(1): 69 -76 .
[9] 杨发展1 ,艾兴1 ,赵军1 ,侯建锋2 . ZrO2含量对WC基复合材料的力学性能和微观结构的影响[J]. 山东大学学报(工学版), 2009, 39(1): 92 -95 .
[10] 孙玉利,李法德,左敦稳,戚美 . 直立分室式流体连续通电加热系统的升温特性[J]. 山东大学学报(工学版), 2006, 36(6): 19 -23 .