您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(工学版)》

山东大学学报(工学版) ›› 2012, Vol. 42 ›› Issue (5): 7-11.

• 机器学习与数据挖掘 • 上一篇    下一篇

一种基于灰色系统和支持向量机的预测优化模型

施珺,朱敏   

  1. 淮海工学院计算机工程学院, 江苏 连云港 222000
  • 收稿日期:2012-04-05 出版日期:2012-10-20 发布日期:2012-04-05
  • 作者简介:施珺(1963- ),女,安徽桐城人,副教授,硕士,主要研究方向为数据挖掘,教育信息化. E-mail:shijlfg@126.com
  • 基金资助:
    江苏省自然科学基金资助项目(BK2008190)

An optimization model for forecasting based on grey system and support vector machine

SHI Jun, ZHU Min   

  1. School of Computer Engineering, Huaihai Institute of Technology, Lianyungang 222000, China
  • Received:2012-04-05 Online:2012-10-20 Published:2012-04-05

摘要: 针对传统的灰色系统中预测模型涉及相关因素多,预测效率与精度不足等问题,结合粗糙集理论和支持向量回归机方法,提出了一种改进的预测优化算法。该模型算法首先利用属性约简技术解决影响因子不相容性问题并有效缩减了影响预测值的因子空间,降低计算的复杂性;然后采用灰色模型进行数据预测,并将预测结果作为支持向量机的输入,进而求解优化模型的预测值,最后采用1990~2010年我国人口数据对我国人口进行预测。实验结果表明该预测优化模型在预测效率和精度方面具有较好的表现。

关键词: 属性约简, 支持向量机, 灰色系统, 预测模型, 人口增长率

Abstract: Prediction models in traditional gray system involved various factors and fell short in predicting efficiency and precision. An optimized prediction model was put forward by combining the rough theory and the SVM method. The attribute deduction method was first employed on the inconsistent decision table to seek for the core attribute set, which could enable the prediction model to focus better on narrow and specific attribute fields with higher efficiency. A gray model was applied in the optimized dataset. The result parameters were then treated as the input data of a support vector machine for model prediction. China’s census data (1990~2010) were also applied in population prediction. Experimental results showed that this model had better accuracy and higher efficiency than the existing models.

Key words: attributes reduction, support vector machine, grey system, forecasting model, growth rate of population

中图分类号: 

  • TP18
[1] 邱利芹,王磊,于越,孙雅慧. 知识粒度视角下区间值决策信息系统的增量式属性约简[J]. 山东大学学报 (工学版), 2025, 55(6): 45-57.
[2] 耿麒,李晓斌,黄雨枫,汪学斌,杨沐霖,郭惠川,章慧健. 基于小尺度滚刀直线切割试验的岩石强度预测[J]. 山东大学学报 (工学版), 2025, 55(3): 111-120.
[3] 陈宝国,邓明,陈金林. 基于权重邻域熵的数值型信息系统属性约简算法[J]. 山东大学学报 (工学版), 2024, 54(1): 33-44.
[4] 那绪博,张莹,李沐阳,陈元畅,华云鹏. 基于ODCG的网约车需求预测模型[J]. 山东大学学报 (工学版), 2023, 53(5): 48-56.
[5] 季雨瑄,叶军,杨震宇,敖家欣,王磊. 结合分辨矩阵改进的邻域粗糙集属性约简算法[J]. 山东大学学报 (工学版), 2022, 52(4): 99-109.
[6] 亓晓燕,刘恒杰,侯秋华,刘啸宇,谭延超,王连成. 融合LSTM和SVM的钢铁企业电力负荷短期预测[J]. 山东大学学报 (工学版), 2021, 51(4): 91-98.
[7] 马昕,王雪. 基于Laplacian支持向量机和序列信息的microRNA-结合残基预测[J]. 山东大学学报 (工学版), 2020, 50(2): 76-82.
[8] 杨明, 杜萍静, 刘凤全, 郝旭鹏, 孛一凡. 能源消费发展及预测方法综述[J]. 山东大学学报 (工学版), 2020, 50(1): 56-62.
[9] 梁志祥,刘晓明,牟颖,刘玉田. 基于深度学习的新能源爬坡事件预测方法[J]. 山东大学学报 (工学版), 2019, 49(5): 24-28.
[10] 郑店坤,许同乐,尹召杰,孟庆民. 改进PSO-BP神经网络对尾矿坝地下水位的预测方法[J]. 山东大学学报 (工学版), 2019, 49(3): 108-113.
[11] 严云洋,张慧珍,刘以安,高尚兵. 基于GMM与三维LBP纹理的视频火焰检测[J]. 山东大学学报 (工学版), 2019, 49(1): 1-9.
[12] 李兴,侯振杰,梁久祯,常兴治. 基于线性加速度的多节点人体行为识别[J]. 山东大学学报 (工学版), 2018, 48(6): 56-66.
[13] 叶明全,高凌云,万春圆. 基于人工蜂群和SVM的基因表达数据分类[J]. 山东大学学报(工学版), 2018, 48(3): 10-16.
[14] 谢国辉,樊昊. 太阳能光热发电技术成熟度预测模型[J]. 山东大学学报(工学版), 2017, 47(6): 83-88.
[15] 韩学山,王俊雄,孙东磊,李文博,张心怡,韦志清. 计及空间关联冗余的节点负荷预测方法[J]. 山东大学学报(工学版), 2017, 47(6): 7-12.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 张永花,王安玲,刘福平 . 低频非均匀电磁波在导电界面的反射相角[J]. 山东大学学报(工学版), 2006, 36(2): 22 -25 .
[2] 李 侃 . 嵌入式相贯线焊接控制系统开发与实现[J]. 山东大学学报(工学版), 2008, 38(4): 37 -41 .
[3] 来翔 . 用胞映射方法讨论一类MKdV方程[J]. 山东大学学报(工学版), 2006, 36(1): 87 -92 .
[4] 余嘉元1 , 田金亭1 , 朱强忠2 . 计算智能在心理学中的应用[J]. 山东大学学报(工学版), 2009, 39(1): 1 -5 .
[5] 陈瑞,李红伟,田靖. 磁极数对径向磁轴承承载力的影响[J]. 山东大学学报(工学版), 2018, 48(2): 81 -85 .
[6] 王波,王宁生 . 机电装配体拆卸序列的自动生成及组合优化[J]. 山东大学学报(工学版), 2006, 36(2): 52 -57 .
[7] 张英,郎咏梅,赵玉晓,张鉴达,乔鹏,李善评 . 由EGSB厌氧颗粒污泥培养好氧颗粒污泥的工艺探讨[J]. 山东大学学报(工学版), 2006, 36(4): 56 -59 .
[8] Yue Khing Toh1 , XIAO Wendong2 , XIE Lihua1 . 基于无线传感器网络的分散目标跟踪:实际测试平台的开发应用(英文)[J]. 山东大学学报(工学版), 2009, 39(1): 50 -56 .
[9] 刘忠国,张晓静,刘伯强,刘常春 . 视觉刺激间隔对大脑诱发电位的影响[J]. 山东大学学报(工学版), 2006, 36(3): 34 -38 .
[10] 孙炜伟,王玉振. 考虑饱和的发电机单机无穷大系统有限增益镇定[J]. 山东大学学报(工学版), 2009, 39(1): 69 -76 .