山东大学学报(工学版) ›› 2012, Vol. 42 ›› Issue (6): 1-7.
• 机器学习与数据挖掘 • 下一篇
夏战国,万玲,蔡世玉,孙鹏辉
XIA Zhan-guo, WAN Ling, CAI Shi-yu, SUN Peng-hui
摘要: 为了解决传统的入侵检测聚类算法准确率较低这个问题,结合半监督学习的思想,提出了一种面向入侵检测的半监督聚类算法。首先利用样本数据集中的部分标记数据,生成用于初始化聚类的种子集,通过计算样本数据集中标记点与每个类簇中标记点均值的欧氏距离,得到每类的初始聚类中心,实现了入侵检测数据的准确识别。该算法有效地避免了传统聚类算法中初始聚类中心选择的盲目性和随机性,提高了检测率。实验结果表明,在处理入侵检测数据时,该算法能够充分利用少量类标记信息进行半监督学习,较传统的K-means算法聚类效果更好,检测准确率更高。
中图分类号:
| [1] | 刘财辉,周琪,叶晓文. 一种基于改进ReliefF算法的入侵检测模型[J]. 山东大学学报 (工学版), 2023, 53(2): 1-10. |
| [2] | 尹旭,刘兆英,张婷,李玉鑑. 基于弱监督和半监督学习的红外舰船分割方法[J]. 山东大学学报 (工学版), 2022, 52(2): 99-106. |
| [3] | 朱恒东, 马盈仓, 代雪珍. 自适应半监督邻域聚类算法[J]. 山东大学学报 (工学版), 2021, 51(4): 24-34. |
| [4] | 张海军,陈映辉. 语义分析及向量化大数据跨站脚本攻击智检[J]. 山东大学学报 (工学版), 2020, 50(2): 118-128. |
| [5] | 肖苗苗,魏本征,尹义龙. 基于BFOA和K-means的复合入侵检测算法[J]. 山东大学学报(工学版), 2018, 48(3): 115-119. |
| [6] | 孔超1,2,张化祥1,2*,刘丽1,2. 基于兴趣区域特征融合的半监督图像检索算法[J]. 山东大学学报(工学版), 2014, 44(3): 22-28. |
| [7] | 李春彦,刘怡良,王良民*. 车载自组网中基于交通场景的入侵行为检测机制[J]. 山东大学学报(工学版), 2014, 44(1): 29-34. |
| [8] | 王昊,华继学,范晓诗. 基于双联支持向量机的入侵检测技术[J]. 山东大学学报(工学版), 2013, 43(6): 53-56. |
| [9] | 李雅林1,2,张化祥1,2*,冯新营1,2. 一种新的基于半监督的多标记学习算法[J]. 山东大学学报(工学版), 2013, 43(2): 18-22. |
| [10] | 丁彦,李永忠*. 基于PCA和半监督聚类的入侵检测算法研究[J]. 山东大学学报(工学版), 2012, 42(5): 41-46. |
| [11] | 谢伙生,刘敏. 一种基于主动学习的集成协同训练算法[J]. 山东大学学报(工学版), 2012, 42(3): 1-5. |
| [12] | 张友新,王立宏. 两阶段近邻传播半监督聚类算法[J]. 山东大学学报(工学版), 2012, 42(2): 18-22. |
| [13] | 魏巍,张艳宁. 基于半监督隐含狄利克雷分配的人脸姿态判别方法[J]. 山东大学学报(工学版), 2011, 41(3): 17-22. |
| [14] | 宿洪禄,李凡长*. 基于相异性和不变特征的半监督图像检索[J]. 山东大学学报(工学版), 2010, 40(5): 150-153. |
| [15] | 崔宝今 林鸿飞 张霄. 基于半监督学习的蛋白质关系抽取研究[J]. 山东大学学报(工学版), 2009, 39(3): 16-21. |
|