您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(工学版)》

山东大学学报(工学版) ›› 2011, Vol. 41 ›› Issue (6): 12-17.

• 机器学习与数据挖掘 • 上一篇    下一篇

汉语词性标注的特征工程

于江德1,周宏宇1,余正涛2   

  1. 1.安阳师范学院计算机与信息工程学院, 河南 安阳 455002;
    2. 昆明理工大学信息工程与自动化学院, 云南 昆明 650051
  • 收稿日期:2011-04-15 出版日期:2011-12-16 发布日期:2011-04-15
  • 作者简介:于江德(1971- ),男,河南林州人,副教授,博士,主要研究方向为计算语言学,中文信息处理,文本信息抽取等. E-mail:jiangde-yu@163.com
  • 基金资助:

    国家自然科学基金资助项目(60663004);河南省高等学校青年骨干教师项目(2009GGJS-108)

Feature engineering for Chinese part-of-speech tagging

YU Jiang-de1,  ZHOU Hong-yu1, YU Zheng-tao2   

  1. 1. School of Computer and Information Engineering, Anyang Normal University, Anyang 455002, China;
    2. School of Information Engineering and Automation, Kunming University of Science and
     Technology, Kunming  650051, China
  • Received:2011-04-15 Online:2011-12-16 Published:2011-04-15

摘要:

上下文特征对汉语词性标注性能有重要影响。为了提高标注性能,采用最大熵模型探讨了汉语词性标注的特征工程,对其中的两个关键问题:特征窗口大小和特征模板集的设定,本文作者进行了深入研究。在Bakeoff2007的PKU、NCC、CTB 3种语料上进行了封闭测试,通过对“5词语”和“3词语”不同大小的特征窗口,以及单词语、双词语和两者混合的不同特征模板集进行汉语词性标注的训练过程和标注精度的对比实验,实验结果表明:3词特征窗口训练情况和标注性能均优于5词窗口;单词语特征模板集比双词语特征模板集标注性能高出10%。这说明汉语词性标注中特征窗口开设的大小以3词窗口为宜,单词语特征模板集标注性能更好。

关键词: 汉语词性标注, 最大熵模型, 上下文特征, 特征窗口, 特征模板

Abstract:

Context features have a major impact on  the performance of Chinese part-of-speech tagging. In order to improve  the performance, the feature engineering for Chinese part-of-speech tagging was explored by the using maximum entropy model. Two key issues of feature engineering, the size of the feature window and the feature templates, were  studied. Closed evaluations were performed on PKU, NCC and CTB corpus from the Bakeoff-2007. Then,   comparative experiments about the training process and tagging accuracy for Chinese part-of-speech tagging were performed on different feature windows,  the “5 words” and “3 words” feature windows, and different feature templates: single-word, doubleword and mixing feature templates. Experimental results showed  that the feature window including 3 words was better  than that of 5 words, and the performance increased 10% using single-word feature templates than double-word feature templates. All the results  showed  that the feature window including 3 words and single-word feature templates were  appropriate for Chinese part-of-speech tagging.

Key words: Chinese part-of-speech tagging, maximum entropy model, context feature, feature window, feature template

中图分类号: 

  • TP391
[1] 于江德1,睢丹1,樊孝忠2. 基于字的词位标注汉语分词[J]. 山东大学学报(工学版), 2010, 40(5): 117-122.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 王素玉,艾兴,赵军,李作丽,刘增文 . 高速立铣3Cr2Mo模具钢切削力建模及预测[J]. 山东大学学报(工学版), 2006, 36(1): 1 -5 .
[2] 李 侃 . 嵌入式相贯线焊接控制系统开发与实现[J]. 山东大学学报(工学版), 2008, 38(4): 37 -41 .
[3] 孔祥臻,刘延俊,王勇,赵秀华 . 气动比例阀的死区补偿与仿真[J]. 山东大学学报(工学版), 2006, 36(1): 99 -102 .
[4] 陈瑞,李红伟,田靖. 磁极数对径向磁轴承承载力的影响[J]. 山东大学学报(工学版), 2018, 48(2): 81 -85 .
[5] 李可,刘常春,李同磊 . 一种改进的最大互信息医学图像配准算法[J]. 山东大学学报(工学版), 2006, 36(2): 107 -110 .
[6] 季涛,高旭,孙同景,薛永端,徐丙垠 . 铁路10 kV自闭/贯通线路故障行波特征分析[J]. 山东大学学报(工学版), 2006, 36(2): 111 -116 .
[7] 浦剑1 ,张军平1 ,黄华2 . 超分辨率算法研究综述[J]. 山东大学学报(工学版), 2009, 39(1): 27 -32 .
[8] 王丽君,黄奇成,王兆旭 . 敏感性问题中的均方误差与模型比较[J]. 山东大学学报(工学版), 2006, 36(6): 51 -56 .
[9] 孙殿柱,朱昌志,李延瑞 . 散乱点云边界特征快速提取算法[J]. 山东大学学报(工学版), 2009, 39(1): 84 -86 .
[10] 赵然杭,陈守煜 . 水资源数量与质量联合评价理论模型研究[J]. 山东大学学报(工学版), 2006, 36(3): 46 -50 .