山东大学学报(工学版) ›› 2011, Vol. 41 ›› Issue (4): 137-142.
• 论文 • 上一篇
王爱国,李廉*,杨静,陈桂林
WANG Ai-guo, LI Lian*, YANG Jing, CHEN Gui-lin
摘要:
为改善用户的Web页面访问行为、提高访问效率, 设计了一种基于贝叶斯网络的网页推荐模型及推荐算法。通过收集和分析服务器中的描述文件和日志文件,利用Bayesian网络分析页面间的依赖关系,构建了基于贝叶斯网络的网页推荐模型并产生推荐集。通过在Microsoft公司提供的网络日志数据集上做的实验,可以获得超过80%的准确率和覆盖率。理论分析和实验结果表明,算法能够在线实时向用户做出个性化的推荐,与已有的推荐算法相比,算法能较快地给出推荐集,并且可以获得更高的准确率和覆盖率。
| [1] | 周彦冰,马士伦,文益民. 基于图结构的概念漂移检测[J]. 山东大学学报 (工学版), 2025, 55(2): 88-96. |
| [2] | 王梅,宋凯文,刘勇,王志宝,万达. DMKK-means——一种深度多核K-means聚类算法[J]. 山东大学学报 (工学版), 2024, 54(6): 1-7. |
| [3] | 聂秀山,马玉玲,乔慧妍,郭杰,崔超然,于志云,刘兴波,尹义龙. 任务粒度视角下的学生成绩预测研究综述[J]. 山东大学学报 (工学版), 2022, 52(2): 1-14. |
| [4] | 张妮,韩萌,王乐,李小娟,程浩东. 基于索引列表的增量高效用模式挖掘算法[J]. 山东大学学报 (工学版), 2022, 52(2): 107-117. |
| [5] | 张胜男,王雷,常春红,郝本利. 基于三维剪切波变换和BM4D的图像去噪方法[J]. 山东大学学报 (工学版), 2020, 50(2): 83-90. |
| [6] | 陈德蕾, 王成, 陈建伟, 吴以茵. 基于门控循环单元与主动学习的协同过滤推荐算法[J]. 山东大学学报 (工学版), 2020, 50(1): 21-27. |
| [7] | 胡云,张舒,李慧,佘侃侃,施珺. 基于信任网络重构的推荐算法[J]. 山东大学学报 (工学版), 2019, 49(2): 42-46. |
| [8] | 杨思, 李思童, 张进东, 白羽. 高速光通信激光器带宽模型改进与并行计算优化[J]. 山东大学学报 (工学版), 2019, 49(1): 17-22. |
| [9] | 读习习,刘华锋,景丽萍. 一种融合社交网络的叠加联合聚类推荐模型[J]. 山东大学学报(工学版), 2018, 48(3): 96-102. |
| [10] | 庞人铭,王波,叶昊,张海峰,李明亮. 基于PCA相似度和谱聚类相结合的高炉历史数据聚类[J]. 山东大学学报(工学版), 2017, 47(5): 143-149. |
| [11] | 王鑫,陆静雅,王英. 面向推荐的用户兴趣扩展方法[J]. 山东大学学报(工学版), 2017, 47(2): 71-79. |
| [12] | 林耀进,张佳,林梦雷,王娟. 一种基于模糊信息熵的协同过滤推荐方法[J]. 山东大学学报(工学版), 2016, 46(5): 13-20. |
| [13] | 黄丹,王志海,刘海洋. 一种局部协同过滤的排名推荐算法[J]. 山东大学学报(工学版), 2016, 46(5): 29-36. |
| [14] | 李朔,石宇良. 基于位置社交网络中地点聚类推荐方法[J]. 山东大学学报(工学版), 2016, 46(3): 44-50. |
| [15] | 庞俊涛, 张晖, 杨春明, 李波, 赵旭剑. 基于概率矩阵分解的多指标协同过滤算法[J]. 山东大学学报(工学版), 2016, 46(3): 65-73. |
|