您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(工学版)》

山东大学学报(工学版)

• 控制科学与工程 • 上一篇    下一篇

复杂背景下的交通信号灯综合识别方法

佀君淑,朱文兴*,沙永贺   

  1. 山东大学控制科学与工程学院, 山东 济南 250061
  • 收稿日期:2013-11-05 出版日期:2014-04-20 发布日期:2013-11-05
  • 通讯作者: 朱文兴(1971- ),男,山东平度人,博士,教授,硕士生导师,研究方向为智能交通系统及理论建模. E-mail: zhuwenxing@sdu.edu.cn
  • 作者简介:佀君淑(1990- ),女,山东郓城人,硕士研究生,研究方向为智能交通系统,视频图像处理. E-mail:sijunshu@163.com
  • 基金资助:
    国家自然科学基金资助项目(61174175);济南市科技发展计划项目(201118006, 201201022)

A comprehensive method for traffic lights detection in complex background

SI Junshu, ZHU Wenxing*,  SHA Yonghe   

  1. School of Control Science and Engineering, Shandong University, Jinan 250061, China
  • Received:2013-11-05 Online:2014-04-20 Published:2013-11-05

摘要: 针对复杂背景下多类型交通信号灯的自动识别问题,提出一种基于亮度分割、K均值聚类及前景直方图分析相结合的识别方法。首先通过亮度分割、几何特征分析和分类统计方法对信号灯进行自动定位;然后利用K均值聚类算法判断信号灯颜色;最终通过分析信号灯前景直方图对信号灯类型及其包含的方向信息进行判断,从而实现信号灯的自动识别。实验结果表明,该方法对不同场景下的不同类型信号灯均具有很高的识别准确率,证明了该方法的高可靠性和广泛适用性。

关键词: 交通信号灯识别, 亮度分割, K均值聚类, 前景直方图, 自动定位

Abstract: To solve the auto-recognition problem of multi-type traffic lights in complex background, a novel method based on brightness value division,K-means clustering and histogram analysis of foreground objects was proposed. Firstly, self-localization was realized by brightness value division, geometric features analysis and classification statistics. Along with signal color judgment by K-means clustering algorithm, the type and direction information of traffic lights would be acquired by analyzing the histograms of foreground objects; accordingly auto-detection was realized. Experimental results showed that the proposed method had high detection accuracy for multi-type traffic lights in different scenarios. It was proved that this method was highly reliable and widely applicable.

Key words: self-localization, traffic light recognition, brightness value division, K-means clustering, foreground object histogram

中图分类号: 

  • TP391
[1] 吉兴全,韩国正,李可军,傅荣荣,朱仰贺. 基于密度的改进K均值聚类算法在配网区块划分中的应用[J]. 山东大学学报(工学版), 2016, 46(4): 41-46.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!