您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(工学版)》

山东大学学报 (工学版) ›› 2015, Vol. 45 ›› Issue (5): 88-94.doi: 10.6040/j.issn.1672-3961.0.2015.159

• • 上一篇    

双循环湿法烟气脱硫流动传质模拟

秦明臣1,董勇1*,崔琳1,睢辉1,刘景龙2   

  1. 1. 燃煤污染物减排国家工程实验室(山东大学), 山东 济南 250061;2. 国网山东电力公司电力科学研究院, 山东 济南 250002
  • 发布日期:2020-05-26
  • 通讯作者: 董勇(1967- ),男, 山东寿光人, 教授, 主要研究方向为燃煤污染物综合控制技术. E-mail: dongy@sdu.edu.cn
  • 作者简介:秦明臣(1989- ), 男, 山东菏泽人, 硕士研究生, 主要研究方向为多相流动数值模拟. E-mail: qinmc1989@163.com. *通信作者: 董勇(1967- ),男, 山东寿光人, 教授, 主要研究方向为燃煤污染物综合控制技术. E-mail: dongy@sdu.edu.cn
  • 基金资助:
    国家自然科学基金资助项目(51176103);山东省科技发展计划资助项目(2014GSF117034)

The simulation of fluid dynamics and mass transfer in a double-loop WFGD

QIN Mingchen1, DONG Yong1*, CUI Lin1, SUI Hui1, LIU Jinglong2   

  1. 1. National Engineering Laboratory for Coal-fired Pollutants Emission Reduction(Shandong University), Jinan 250061, Shandong, China;
    2. Power Research Institute Power Company, State Grid Shandong Electric, Jinan 250002, Shandong, China
  • Published:2020-05-26

Abstract: A gas-liquid hydrodynamic model was established by the Euler-Lagrange method to simulate a pilot-scale double-loop wet flue-gas desulfurization(WFGD)reactor. The SO2 absorption mass-transfer model was primarily built on the dual-film theory, and the SO2 absorption procedure was implemented in the commercial software FLUENT through a user-defined function(UDF). The relationship between main operation parameters and the SO2 removal efficiency was analyzed, and the gas and liquid side mass transfer resistance was also discussed. Results showed that the desulfurization efficiency rised by increasing liquid-to-gas ratios and reduced with the improving of superficial gas velocity. Gas film resistance to liquid film resistance ratio was about 0.35 in the lower-loop, while 0.65 in the upper-loop. Studies on the pilot-scale double-loop WFGD tower showed that the simulated SO2 removal efficiency agreed well with the experimental data, with an error of less than 5%. Therefore, the mathematical model can be used to optimize full-size double-loop WFGD structures, as well as to predict the SO2 distribution and desulfurization efficiency.

Key words: double-loop, wet flue gas desulfurization, numerical simulation, mass transfer, multi-phase flow

中图分类号: 

  • X701.3
[1] WOLFGANG T R. FGD technology developments in Europe and North America[C] //Processdings of EPA-DOE-EPRI Mega Symposium. Illinois, USA:[s.n.] , 2001:20-24.
[2] DEUSTER E, MENSING A, JIANG M X, et al. Cleaning of flue gas from solid waste incinerator plants by wet/semi-dry process[J]. Environmental Progress, 1994, 13(2):149-153.
[3] DEKRAKER D P. Results of high velocity tests at Tampa electric company's Big Bend 4 FGD system topical report[R]. Pittsburgh, USA: Department of Energy Pittsburgh Energy Technology Center, 1997.
[4] BLYTHE G M. Results of full-scale utility FGD SO2 removal upgrade testing[C] //Processdings of Tenth Annual Coal Preparation, Utilization, and Environmental Control Contractors Conference. Texas, USA:[s.n.] , 1994:18-21.
[5] DENE C, BAKER L A, KEETH R J. FGD Performance Capability[C] //Processdings of MEGA Symposium. Baltimore, USA:[s.n.] , 2008:1-22.
[6] 万金保, 李媛媛. 论双回路吸收塔及其循环浆液计算[J]. 环境工程, 2007, 25(2):46-48. WAN Jinbao, LI Yuanyuan. Discussion on double return absorption tower and its circulation slurry computation[J]. Environmental Engineering, 2007, 25(2):46-48.
[7] 田立江, 王丽萍, 张洁, 等. 双循环多级水幕吸收塔烟气除尘脱硫性能研究[J]. 环境工程学报, 2009,3(1):151-155. TIAN Lijiang, WANG Liping, ZHANG Jie, et al. Research on the characteristics of flue gas dust removal and desulfurization using double-recycling and multi-stage water film tower[J].Chinese Journal of Environmental Engineering, 2009, 3(1):151-155.
[8] 田立江, 王丽萍, 王丽丽, 等. 基于双循环多级水幕塔的无机盐强化烟气脱硫研究[J].中南大学学报:自然科学版, 2011,42(2):555-560. TIAN Lijiang, WANG Liping, WANG Lili, et al. Flue gas desulfurization enhanced by inorganic salts using double circulation and multi-stage water film tower[J]. Journal of Central South University: Science and Technology, 2011, 42(2):555-560.
[9] MAROCCO L. Modeling of the fluid dynamics and SO2 absorption in a gas-liquid reactor[J]. Chemical Engineering Journal, 2010, 162(1):217-226.
[10] 钟毅, 高翔, 王惠挺,等. 基于CFD技术的湿法烟气脱硫系统性能优化[J]. 中国电机工程学报, 2008, 28(32):18-24. ZHONG Yi, GAO Xiang, WANG Huiting, et al. Performance optimization of wet flue gas desulphurization system based on CFD technology[J]. Proceeding of the CSEE, 2008, 28(32):18-23.
[11] 林永明, 高翔, 施平平, 等. 大型湿法烟气脱硫喷淋塔内阻力特性数值模拟[J]. 中国电机工程学报, 2008, 28(5):28-33. LIN Yongming, GAO Xiang, SHI Pingping, et al. Numerical simulation on resistance characteristic of large scale wet flue gas desulphurization spraying scrubber[J]. Proceeding of the CSEE, 2008, 28(5):28-33.
[12] DOU B L, YOUNG C B, JUNGHO H. Flue gas desulfurization with an electrostatic spraying absorber[J]. Energy & Fuels, 2008, 22(2):1041-1045.
[13] MONDAL M K. Experimental determination of dissociation constant, Henrys constant, heat of reactions, SO2 absorbed and gas bubble-liquid interfacial area for dilute sulphur dioxide absorption into water[J]. Fluid Phase Equilibria, 2007, 253(2):98-107.
[14] KALLINIKOS L E, FARSARI E I, SARTINO D N, et al. Simulation of the operation of an industrial wet flue gas desulfurization system[J]. Fuel Processing Technology, 2010, 91(12):1794-1802.
[15] ANTONIO G, NORBERTO F, ALFREDO T. Detailed modeling of a flue-gas desulfurization plant[J]. Computers and Chemical Engineering, 2007, 31(11):1419-1431.
[16] CHARLOTTE B, HANS T K. Modeling the absorption of SO2 in a spray scrubber using the penetration theory[J]. Chemical Engineering Science, 1997, 52(18):3085-3099.
[17] JERZY W, MAREK S. Model of the wet limestone flue gas desulfurization process for cost optimization[J]. Industrial Engineering Chemistry Research, 2001, 40(12):2597-2605.
[18] 刘景龙. 双pH值湿法烟气脱硫的试验研究[D]. 济南:山东大学, 2012. LIU Jinglong. Experimental study on dual-pH value wet flue gas desulfurization [D]. Jinan: Shandong University, 2012.
[19] 钟毅, 高翔, 骆仲泱, 等. 湿法烟气脱硫系统脱硫效率的影响因素[J]. 浙江大学学报:工学版, 2008, 42(5):890-894. ZHONG Yi, GAO Xiang, LUO Zhongyang, et al. Factors influencing desulfurization efficiency of wet flue gas desulfurization system[J]. Journal of Zhejiang University: Engineering Science, 2008, 42(5):890-894.
[20] 赵健植, 金保升, 仲兆平. 烟气脱硫喷淋塔的数值模拟[J]. 化学工程, 2007, 35(8):61-64. ZHAO Jianzhi, JIN Baosheng, ZHONG Zhaoping. Numerical simulation of flue gas desulphurization by spray tower[J]. Chemical Engineering, 2007, 35(8):61-64.
[21] ANITAVA B, MANINDRA N B. Prediction of the removal efficiency of a novel two-stage hybrid scrubber for flue gas desulfurization[J]. Chemical Engineering & Technology, 2006, 29(1):130-145.
[22] GAO X, HUO W, LUO Z, et al. CFD simulation with enhancement factor of sulfur dioxide absorption in the spray scrubber[J]. Journal of Zhejiang University SCIENCE A, 2008, 9(11):1601-1613.
[23] MAROCCO L, INZOLI F. Multiphase Euler—Lagrange CFD simulation applied to wet flue gas desulphurization technology[J]. International Journal of Multiphase Flow, 2009, 35(2):185-194.
[24] 郝文阁, 赵光玲, 王东鹏, 等. 石灰石湿法脱硫过程中SO2吸收数学模型[J]. 环境工程学报, 2008, 2(7):969-972. HAO Wenge, ZHAO Guangling, WANG Dongpeng, et al. Mathematic model of absorption of sulfur dioxide in wet flue gas desulfurization[J]. Chinese Journal of Environmental Engineering, 2008, 2(7):969-972.
[1] 秦明臣, 董勇, 崔琳, 睢辉, 刘景龙. 双循环湿法烟气脱硫流动传质模拟[J]. 山东大学学报(工学版), 0, (): 88-94.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!