您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(工学版)》

山东大学学报(工学版) ›› 2012, Vol. 42 ›› Issue (4): 13-18.

• 机器学习与数据挖掘 • 上一篇    下一篇

局部密度嵌入的结构单类支持向量机

赵加敏,冯爱民*,刘学军   

  1. 南京航空航天大学计算机科学与技术学院, 江苏 南京 210016
  • 收稿日期:2011-12-06 出版日期:2012-08-20 发布日期:2011-12-06
  • 通讯作者: 冯爱民(1971- ),女,河南焦作人,副教授,主要研究方向为机器学习,模式识别及异常检测.E-mail: amfeng@nuaa.edu.cn E-mail: amfeng@nuaa.edu.cn
  • 作者简介:赵加敏(1986- ),女,吉林永吉人,硕士研究生,主要研究方向为机器学习,异常检测.E-mail: 2005zhaojm@sina.com
  • 基金资助:

    国家自然科学基金资助项目(61170152)

A new structured one-class support vector machine with local density embedding

ZHAO Jia-min, FENG Ai-min*, LIU Xue-jun   

  1. College of Computer Science & Technology, Nanjing University of Aeronautics & Astronautics, Nanjing 210016, China
  • Received:2011-12-06 Online:2012-08-20 Published:2011-12-06

摘要:

针对现有单类分类器对目标数据先验信息考虑的不足,在结构单类支持向量机(structured one-class support vector machine,SOCSVM)中嵌入局部密度信息,提出局部密度嵌入的结构单类支持向量机(SOCSVM with local density embedding ldSOCSVM)。借助K近邻(K-nearest neighbor, KNN)揭示目标数据局部密度,并进一步诱导出权重因子作用于样本点。该算法充分利用目标数据的全局信息及局部密度信息,从而提高分类器的泛化能力。UCI数据集上的实验结果验证了ldSOCSVM的有效性。

关键词: 单类分类器, 先验信息, 结构单类支持向量机, 局部密度, 权重因子

Abstract:

To improve the generalization ability of one-class classifier, more prior knowledge were taken into account on the existed models. A new structured one-class support vector machine with local density embedding (ldSOCSVM) was proposed, which could embed local information of target data into the structured one-class support vector machine (SOCSVM). By means of K-nearest neighbor, the weighted factor was extracted and applied to the corresponding samples by fully utilizing local information with the global ones inherited from SOCSVM, the ldSOCSVM improved the generalization ability. Experimental results on UCI datasets showed that the proposed classifier could achieve better generalization capability compared with related algorithms.

Key words: one-class classifier, prior knowledge, structured one-class support vector machine, local density, weighted factor

[1] 陈素根,赵志忠. 融合局部截断距离及小簇合并的密度峰值聚类[J]. 山东大学学报 (工学版), 2025, 55(2): 58-70.
[2] 卢建云,张蔚,李林. 一种基于动态局部密度和聚类结构的聚类算法[J]. 山东大学学报 (工学版), 2022, 52(2): 118-127.
[3] 方波,陈红梅. 一种新的双策略进化果蝇优化算法[J]. 山东大学学报 (工学版), 2019, 49(3): 22-31.
[4] 张友新,王立宏. 两阶段近邻传播半监督聚类算法[J]. 山东大学学报(工学版), 2012, 42(2): 18-22.
[5] 冯爱民1,刘学军1,陈斌2. 结构大间隔单类分类器[J]. 山东大学学报(工学版), 2010, 40(3): 6-12.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李 侃 . 嵌入式相贯线焊接控制系统开发与实现[J]. 山东大学学报(工学版), 2008, 38(4): 37 -41 .
[2] 来翔 . 用胞映射方法讨论一类MKdV方程[J]. 山东大学学报(工学版), 2006, 36(1): 87 -92 .
[3] 余嘉元1 , 田金亭1 , 朱强忠2 . 计算智能在心理学中的应用[J]. 山东大学学报(工学版), 2009, 39(1): 1 -5 .
[4] 陈瑞,李红伟,田靖. 磁极数对径向磁轴承承载力的影响[J]. 山东大学学报(工学版), 2018, 48(2): 81 -85 .
[5] 王波,王宁生 . 机电装配体拆卸序列的自动生成及组合优化[J]. 山东大学学报(工学版), 2006, 36(2): 52 -57 .
[6] 张英,郎咏梅,赵玉晓,张鉴达,乔鹏,李善评 . 由EGSB厌氧颗粒污泥培养好氧颗粒污泥的工艺探讨[J]. 山东大学学报(工学版), 2006, 36(4): 56 -59 .
[7] Yue Khing Toh1 , XIAO Wendong2 , XIE Lihua1 . 基于无线传感器网络的分散目标跟踪:实际测试平台的开发应用(英文)[J]. 山东大学学报(工学版), 2009, 39(1): 50 -56 .
[8] 孙炜伟,王玉振. 考虑饱和的发电机单机无穷大系统有限增益镇定[J]. 山东大学学报(工学版), 2009, 39(1): 69 -76 .
[9] 关小军,韩振强,申孝民,麻晓飞,刘运腾 . 09CuPTiRE钢动态再结晶的热模拟实验与有限元模拟[J]. 山东大学学报(工学版), 2006, 36(5): 17 -20 .
[10] 孙玉利,李法德,左敦稳,戚美 . 直立分室式流体连续通电加热系统的升温特性[J]. 山东大学学报(工学版), 2006, 36(6): 19 -23 .