﻿ 输电线路参数与运行方式的相关性分析
 文章快速检索 高级检索
 山东大学学报(工学版)  2017, Vol. 47 Issue (4): 89-95  DOI: 10.6040/j.issn.1672-3961.0.2016.422 0

### 引用本文

HOU Guangsong, GAO Jun, WU Yanda, ZHANG Xin, DENG Ying, LI Changgang, ZHANG Yaping. Correlation analysis between transmission line parameters and operation modes[J]. Journal of Shandong University (Engineering Science), 2017, 47(4): 89-95. DOI: 10.6040/j.issn.1672-3961.0.2016.422.

### 文章历史

1. 国网山东省电力公司菏泽供电公司, 山东 菏泽 274000;
2. 山东大学电气工程学院, 山东 济南 250061

Correlation analysis between transmission line parameters and operation modes
HOU Guangsong1, GAO Jun1, WU Yanda1, ZHANG Xin1, DENG Ying1, LI Changgang2, ZHANG Yaping2
1. State Grid Heze Electric Power Company, Heze 274000, Shandong, China;
2. School of Electrical Engineering, Shandong University, Jinan 250061, Shandong, China
Abstract: To solve the problem that the parameters under actual operation modes may be different from the database, a transmission line parameter identification model based on phasor measurement unit data was presented to identify the line parameters. Based on field measurement data, the correlation between changes in line parameters and current and voltage was analyzed. The high correlation between the reactance parameter of actual transmission lines and current was obtained. The correlation between different transmission lines was different. Study result was helpful to enhance the accuracy of database.
Key words: power systems    transmission lines    parameter identification    phasor measurement unit    operation mode    correlation
0 引言

1 影响输电线路参数的因素

 图 1 输电线路的集中参数模型 Figure 1 Lumped symmetry model of transmission line

 $\left\{ \begin{array}{l} R = L\frac{\rho }{A},\\ X = L\left( {0.144\,5{\rm{lg}}\frac{{{D_{\rm{m}}}}}{r} + 0.0157{\mu _{\rm{r}}}} \right),\\ B = L\frac{{7.58}}{{{\rm{lg}}\frac{{{D_{\rm{m}}}}}{r}}} \times {10^{ - 6}}, \end{array} \right.$ (1)

2 基于PMU的线路参数辨识

 ${{\mathit{\dot I}}_{\rm{1}}}\mathit{ + }{{\mathit{\dot I}}_{\rm{2}}} = \left( {{{\mathit{\dot U}}_{\rm{1}}}\mathit{ - }{{\mathit{\dot U}}_{\rm{2}}}} \right)\frac{{{\rm{j}}B}}{2},$ (2)

 ${\rm{j}}\mathit{B} = 2\frac{{{{\mathit{\dot I}}_{\rm{1}}}\mathit{ + }{{\mathit{\dot I}}_{\rm{2}}}}}{{{{\mathit{\dot U}}_{\rm{1}}}\mathit{ - }{{\mathit{\dot U}}_{\rm{2}}}}},$ (3)

 ${{\mathit{\dot U}}_{\rm{1}}} - \left( {{{\mathit{\dot I}}_{\rm{1}}} - {{\mathit{\dot U}}_{\rm{1}}}\frac{{{\rm{j}}B}}{2}} \right)\left( {R + {\rm{j}}\mathit{X}} \right) = {{\mathit{\dot U}}_{\rm{2}}},$ (4)

 $R + {\rm{j}}\mathit{X} = \frac{{{{\mathit{\dot U}}_{\rm{1}}} - {{\mathit{\dot U}}_{\rm{2}}}}}{{{{\mathit{\dot I}}_{\rm{1}}} - {{\mathit{\dot U}}_{\rm{1}}}\frac{{{\rm{j}}B}}{2}}}。$ (5)

 $\left[ \begin{array}{l} {{\mathit{\boldsymbol{\dot F}}}_1}\\ {{\mathit{\boldsymbol{\dot F}}}_2}\\ {{\mathit{\boldsymbol{\dot F}}}_0} \end{array} \right] = \frac{1}{3}\left[ \begin{array}{l} 1\quad {e^{{\rm{j}}{{120}^ \circ }}}\quad {e^{{\rm{ - j}}{{120}^ \circ }}}\\ 1\quad {e^{{\rm{ - j}}{{120}^ \circ }}}\quad {e^{{\rm{j}}{{120}^ \circ }}}\\ 1\quad \quad 1\quad \;\;\;\;1 \end{array} \right]\left[ \begin{array}{l} {{\mathit{\boldsymbol{\dot F}}}_{\rm{a}}}\\ {{\mathit{\boldsymbol{\dot F}}}_b}\\ {{\mathit{\boldsymbol{\dot F}}}_{\rm{c}}} \end{array} \right],$ (6)

3 实际线路分析

3.1 单回线的电气参数分析

 图 2 线路1辨识参数结果 Figure 2 Identified parameters results of line 1

 图 3 线路1送端电压和电流 Figure 3 Voltage and current of sending terminal of line 1

 图 4 线路1辨识参数结果与电流的关系 Figure 4 Relationship between identified parameters results and current of line 1

X-I的关系图可以看出, 虽然线路的辨识结果存在一定分散性, 但该线路的电抗参数随电流的增大整体呈现明显的下降趋势。通过电抗和电流之间的线性相关性分析, 可知该线路的电抗参数与电流之间的相关系数为-0.9373, 即两者强烈负相关, 并可以拟合得到电抗和电流之间的关系曲线为

 $\mathit{X} = - 0.008\mathit{I + }{\rm{28}}{\rm{.588}}\;{\rm{5}}。$ (7)

 $R = - 0.001\,8\mathit{I + }{\rm{2}}{\rm{.938}}\,{\rm{0}}。$ (8)

3.2 同塔双回线路的电气参数分析

 图 5 线路2辨识参数结果与电流的关系 Figure 5 Relationship between identified parameters results and current of line 2

 $\mathit{X} = - 0.008\,2\mathit{I + }{\rm{31}}{\rm{.616}}\,2。$ (9)

 图 6 线路3辨识参数结果与电流的关系 Figure 6 Relationship between identified parameters results and current of line 3

 $\mathit{X} = - 0.006\,6\mathit{I + }{\rm{30}}{\rm{.515}}\,9。$ (10)

3.3 无显著相关性线路

 图 7 线路4辨识参数结果与电流的关系 Figure 7 Relationship between identified parameters results and current of line 4

4 结论

 [1] 牛胜锁, 梁志瑞, 张建华, 等. 基于多时段同步测量信息的T接线路参数在线测量[J]. 电工技术学报, 2012(5): 238-244 NIU Shengsuo, LIANG Zhirui, ZHANG Jianhua, et al. Online measurement of T-connection transmission line parameters based on multi-interval synchronized measurement information[J]. Transactions of China Electrotechnical Society, 2012(5): 238-244 [2] 柴京慧, 李书敏, 何桦. 基于PMU及多时间断面的输电网参数估计[J]. 电力系统自动化, 2009(11): 49-52 CHAI Jinghui, LI Shumin, HE Hua. Parameter estimation based on PMU and multi-cases of SCADA for electricity transmission netword[J]. Automation of Electric Power System, 2009(11): 49-52 DOI:10.3321/j.issn:1000-1026.2009.11.010 [3] 赵红嘎, 薛禹胜, 汪德星, 等. 计及PMU支路电流相量的状态估计模型[J]. 电力系统自动化, 2004(17): 37-40 ZHAO Hongga, XUE Yusheng, WANG Dexing, et al. State estimation model with PMU current phasor measurements[J]. Automation of Electric Power System, 2004(17): 37-40 DOI:10.3321/j.issn:1000-1026.2004.17.007 [4] 刘根宁, 呙年, 梁自超. 覆冰状态下架空输电线路模型参数变化分析[J]. 电力建设, 2014(12): 84-88 LIU Genning, GUO Nian, LIANG Zichao. Model parameter variation of iced overhead transmission line[J]. Electric Power Construction, 2014(12): 84-88 DOI:10.3969/j.issn.1000-7229.2014.12.014 [5] 吴命利, 范瑜. 圆导线内阻抗的数值计算[J]. 技术学报, 2004, 19(3): 52-58 WU Mingli, FAN Yu. Numerical calculations of internal impedance of cylindrical conductors[J]. Transactions of China Electrotechnical Society, 2004, 19(3): 52-58 [6] 薛安成, 张兆阳, 毕天姝. 基于自适应抗差最小二乘的线路正序参数在线辨识方法[J]. 电工技术学报, 2015(8): 202-209 XUE Ancheng, ZHANG Zhaoyang, BI Tianshu. Online identification of transmission line positive-sequence parameters based on adaptive robust least squares[J]. Transactions of China Electrotechnical Society, 2015(8): 202-209 [7] 刘遵义, 卢明, 吕中宾, 等. 特高压交流输电线路工频参数测量技术及应用[J]. 电网技术, 2009, 33(10): 59-64 LIU Zunyi, LU Ming, LYU Zhongbin, et al. Power frequency parameter measurement technology for UHV transmission lines and its application[J]. Power System Technology, 2009, 33(10): 59-64 [8] 李炜, 汤吉鸿, 胡志坚, 等. 利用电压及电流双端测量信息的高压输电线路正序参数测量方法及应用[J]. 电网技术, 2011, 35(4): 103-107 LI Wei, TANG Jihong, HU Zhijian, et al. An approach to measure positive-sequence parameters of HV transmission line by using two-terminal measured voltage and current data and its application[J]. Power System Technology, 2011, 35(4): 103-107 [9] 胡志坚, 刘美观, 张承学, 等. 互感线路参数带电测量研究与实现[J]. 电力系统自动化, 1999, 23(24): 32-35 HU Zhijian, LIU Meiguan, ZHANG Chengxue, et al. Principles and realization of live line measurement to parameters of transmission lines with mutual inductance[J]. Automation of Electric Power System, 1999, 23(24): 32-35 DOI:10.3321/j.issn:1000-1026.1999.24.008 [10] 王茂海, 齐霞. 输电线路电阻参数误差对无功状态估计结果的影响分析[J]. 电力系统保护与控制, 2015(23): 143-147 WANG Maohai, QI Xia. Analysis of transmission line resistance parameter's impacts on reactive power estimation results[J]. Power System Protection and Control, 2015(23): 143-147 DOI:10.7667/j.issn.1674-3415.2015.23.022 [11] 赵菲. 基于广域测量系统的发电机励磁系统及线路参数辨识[D]. 北京: 华北电力大学, 2012. ZHAO Fei. Parameter identification for excitation system and transmission line based on WAMS[D]. Beijing: North China Electric Power University, 2012. [12] 陈晓刚, 易永辉, 江全元, 等. 基于WAMS/SCADA混合量测的电网参数辨识与估计[J]. 电力系统自动化, 2008(5): 1-5 CHEN Xiaogang, YI Yonghui, JIANG Quanyuan, et al. Network parameter identification and estimation based on hybrid measurement of WAMS/SCADA[J]. Automation of Electric Power System, 2008(5): 1-5 [13] 王茂海, 齐霞, 牛四清, 等. 基于相量测量单元实测数据的变压器参数在线估计方法[J]. 电力系统自动化, 2011, 35(13): 61-65 WANG Maohai, QI Xia, NIU Siqing, et al. Online estimation of transformer parameters based on PMU measurements[J]. Automation of Electric Power System, 2011, 35(13): 61-65 [14] 车仁飞, 梁军, 孟昭勇. 一种考虑线路参数变化的输电线路双端测距算法[J]. 中国电力, 2004(2): 49-53 CHE Renfei, LIANG Jun, MENG Zhaoyong. A fault location algorithm for two terminal lines considering the variation of line parameter[J]. Electric Power, 2004(2): 49-53 [15] 陈金猛. 基于PMU的同步发电机与线路参数在线辨识研究[D]. 北京: 华北电力大学(北京), 2008. CHEN Jinmeng. On-line identification method of synchronous generator and transmission line parameters based on PMU[D]. Beijing: North China Electric Power University, 2008. [16] 王茂海, 鲍捷, 齐霞, 等. 基于PMU实测数据的输电线路参数在线估计方法[J]. 电力系统自动化, 2010(1): 25-27, 31 WANG Maohai, BAO Jie, QI Xia, et al. Online estimation of transmission line parameters based on PMU measurements[J]. Automation of Electric Power System, 2010(1): 25-27, 31 [17] 毕天姝, 丁蓝, 张道农. 基于窗口滑动总体最小二乘法的输电线路参数辨[J]. 电力科学与技术报, 2011(2): 10-15 BI Tianshu, DING Lan, ZHANG Daonong. Transmission line parameters identification based on moving-window TLS[J]. Journal of Electric Power Science and Technology, 2011(2): 10-15 [18] 丁蓝, 欧智乐, 汤致凯, 等. 输电线路参数辨识的影响因素研究[J]. 电网技术, 2013(7): 1948-1953 DING Lan, OU Zhile, TANG Zhikai, et al. Research on factors influence identification of transmission line parameters[J]. Power System Technology, 2013(7): 1948-1953 [19] 聂耸, 程养春, 戴沅. 基于导线温度的架空线路弧垂新算法[J]. 华北电力大学学报(自然科学版), 2013, 40(6): 27-32 NIE Song, CHENG Yangchun, DAI Yuan. A new sag calculation method based on the temperature of overhead transmission line[J]. Journal of North China Electric Power University, 2013, 40(6): 27-32 [20] 徐青松, 季洪献, 王孟龙. 输电线路弧垂的实时监测[J]. 高电压技术, 2007, 33(7): 206-209 XU Qingsong, JI Hongxian, WANG Menglong. Real-time monitoring of overhead transmission line sags[J]. High Voltage Engineering, 2007, 33(7): 206-209