Journal of Shandong University(Engineering Science) ›› 2019, Vol. 49 ›› Issue (3): 86-94.doi: 10.6040/j.issn.1672-3961.0.2019.019

• Civil Engineering • Previous Articles     Next Articles

Slope deformation and parameters sensitivity in the design of double-row supporting piles

Yang GAO1,2(),Haokai SUN2,Richeng LIU3   

  1. 1. Chongqing Rail Transit(Group) Co.Ltd., Chongqing 401120, Chongqing, China
    2. Hebei Province Key Lab of Structural Health Monitoring and Control, Shijiazhuang 050043, Hebei, China
    3. State Key Laboratory for Geomechanics and Deep Underground Engineering, School of Mechanics and Civil Engineering, China University of Mining and Technology, Xuzhou 221116, Jiangsu, China
  • Received:2019-01-14 Online:2019-06-20 Published:2019-06-27
  • Supported by:
    国家自然科学基金委青年基金资助项目(51608336);中国博士后科学基金面上基金资助项目(一等)(2017M610170);重庆市博士后研究人员特别资助(二等)(Xm2016015);河北省高等学校科学技术研究青年基金资助项目(QN2016080);西藏科技计划项目(XZ201801-GB-07)

Abstract:

This manuscript took the design of double-row pile support for a foundation pit project in Huaiyin District of Jinan City as an example. Elastoplastic solid elements and linear pile elements in finite difference numerical software was used to simulate the whole process of excavation-support-construction. The pile-soil interaction was taken into account and three-dimensional dynamic analysis carried out. In this paper, the design parameters of soil mechanics parameters, pile diameter, pile length, pile spacing, and coupling beam used to compare the sensitivity of foundation pit deformation. The calculation results for the "entity" and "structure" unit piles used for comparison. The research showed that the simulation process could better show the force mechanism of the double-row supporting pile construction process, and the calculation accuracy was high. The cohesive force, friction angle of the soil and the length of the pile and the distance of the pile in the controllable parameters had a great influence on the support effect. The calculation results could provide a reference for the selection of design parameters of double-row support piles.

Key words: double-row supporting piles, interaction between soil and pile, sensitivity analysis, entity unit pile, structural unit pile

CLC Number: 

  • TU925

Fig.1

Layout drawing of CFG piles, supporting piles, bored cast-in-place piles"

Fig.2

PileSEL local coordinate system and 12 active degree-of-freedoms"

Fig.3

Shear-directional material behavior for pileSELs"

Fig.4

Normal-directional material behavior for pileSELs"

Fig.5

Foundation pit and support structure model"

Fig.6

Constraint condition of model boundary"

Fig.7

Horizontal deformation of foundation pit"

Table 1

Physical and mechanical properties of soils"

序号土类型土层厚/m变形模量/MPa泊松比饱和密度/(kg·m-3)黏聚力/kPa内摩擦角/(°)
1粉土227.330.281 91025.723.4
2粉质黏土517.310.321 96025.021.9
3粉质黏土1120.490.301 94024.821
4黏土1026.400.301 96034.224.9
5粉质黏土1230.330.301 94045.722.9

Table 2

Physical and mechanical properties of sprayed concrete"

面板类型密度/(kg·m-3)弹性模量/GPa泊松比厚度/mm
一般2 500260.380

Table 3

Mechanical properties of linking beam"

类型层厚/m体积模量/GPa剪切模量/GPa黏聚力/MPa摩擦角/(°)饱和密度/(kg·m-3)
连梁0.420.5510.1545.722.92 500

Table 4

Design parameters of piles"

桩编号桩体类型长度/m弹性模量
/GPa
泊松比极惯性矩
/m4
Y轴的
二次矩/m4
Z轴的
二次矩/m4
法向耦合
弹簧的摩擦角/(°)
P1支护桩2230.00.190.012 80.006 40.006 49.6
P2CFG桩1425.50.190.002 60.001 30.001 39.6
P3钻孔灌注桩2431.50.190.012 80.006 40.006 49.6

Table 5

Pile's horizontal displacement of different "unchanged parameters""

计算参数参数取值前排桩最大水平位移/mm后排桩最大水平位移/mm
0.5倍原来抗拉强度9.608.21
原来抗拉强度9.207.66
土的抗拉强度/104N2倍原来抗拉强度9.337.70
5倍原来抗拉强度9.337.70
10倍原来抗拉强度9.337.70
土体摩擦角/(°)原来摩擦角9.207.66
原来摩擦角加5°8.446.86
原来摩擦角加10°8.166.50
原来摩擦角加20°8.086.39
土体黏聚力/kN原来黏聚力9.207.66
2倍原来黏聚力8.086.49
5倍原来黏聚力7.686.03
10倍原来黏聚力7.686.02

Table 6

Pile's horizontal displacement of different "changeable parameters""

计算参数参数
取值
前排桩最大
水平位移/mm
后排桩最大
水平位移/mm
1410.228.97
189.668.03
桩长/m229.207.66
269.187.65
309.167.63
1.69.118.36
2.48.787.74
桩排距/m3.29.787.77
4.09.596.72
4.89.737.31
0.29.217.69
0.49.217.69
桩径/m0.69.207.66
0.89.217.69
1.09.217.69

Table 7

Calculation scale comparison between structural element and soild element"

计算量土体支护结构整个模型
单元/个结构单元桩14 68868415 372
实体单元桩42 94463643 580
节点/个结构单元桩25 94874126 689
实体单元桩63 61568964 304
总循环/次结构单元桩57 311
实体单元桩71 327

Table 8

Comparison of calculation between structural element and solid element"

数据
来源
桩身水
平位移/
mm
桩顶水
平位移/
mm
弯矩/
(kN·m)
剪力/
kN
切向
应力/
kPa
法向
应力/
kPa
接触面
位移/
mm
结构
单元桩
9.208.65554249
实体
单元桩
9.859.852174020.010 8

Fig.8

Horizontal displacement of entity unit pile"

Fig.9

Horizontal displacement of strutural unit pile"

Table 9

Pile's horizontal displacement of different steps"

mm
位置结构单元桩实体单元桩
前排桩后排桩前排桩后排桩
1234123412341234
桩顶0.93.66.18.70.72.75.07.71.64.47.19.81.33.86.69.4
桩身1.33.66.19.21.12.75.07.71.64.47.19.81.33.86.69.4
桩底部0.71.01.11.60.81.11.42.10.20.50.71.10.20.50.71.1

Fig.10

Horizontal displacement without linking beam"

Fig.11

Horizontal displacement with linking beam"

Fig.12

Moment diagram of front row pile bending"

Fig.13

Moment diagram of rear row pile bending"

Fig.14

Shearing force diagram of front row pile"

Fig.15

Shearing force diagram of Rear row pile"

Fig.16

Double row pile shear stress"

Fig.17

Double row pile normal stress"

1 梁秋敏.桩土效应下双排桩三维数值模拟及性状研究[D].广州:暨南大学, 2007.
LIANG Qiumin. Three-dimensional numerical simulation and mechanical behaviors research with double-row pile based on the effect of pile-soil contact[D]. Guangzhou: Jinan University, 2007.
2 崔宏环, 张立群, 赵国景. 深基坑开挖中双排桩支护的三维有限元模拟[J]. 岩土力学, 2006, 27 (4): 662- 666.
doi: 10.3969/j.issn.1000-7598.2006.04.032
CUI Honghuan , ZHANG Liqun , ZHAO Guojing . Numerical simulation of deep foundation pit excavation with double-row piles[J]. Rock and Soil Mechanics, 2006, 27 (4): 662- 666.
doi: 10.3969/j.issn.1000-7598.2006.04.032
3 龚晓南, 高有潮. 深基坑工程设计施工手册[M]. 北京: 中国建筑工业出版社, 1998: 187- 188.
4 OOI Phillip , CHANG Brian , WANG Shuohang . Simplified lateral load analyses of fixed-head piles and pile groups[J]. Journal of Geotechnical Geoenvironment Engineering, 2003, 30 (11): 1140- 1151.
5 DOHRY Ricardo . Single piles in lateral spreads: field bending moment evaluation[J]. Journal of Geotechnical Geoen Vironment Engineering, 2003, 29 (10): 879- 889.
6 ILYAS T , LEUNG C F , CHOW Y K , at el . Centrifuge model study of laterally loaded pile groups in clay[J]. Journal of Geotechnical & Geoenvironment Engineering, 2004, 30 (3): 274- 283.
7 BOSE S K , SOM N N . Parametric study of a braced cut by finite element method[J]. Computer and Geotechnics, 1998, 22 (2): 91- 107.
doi: 10.1016/S0266-352X(97)00033-5
8 刘钊. 双排支护结构的分析及试验研究[J]. 岩土工程学报, 1992, 14 (9): 116- 131.
LIU Zhao . Analysis and experimental study of double row support structure[J]. Chinese Journal of Geotechnical Engineering, 1992, 14 (9): 116- 131.
9 张富军.双排桩支护结构研究[D].成都:西南交通大学, 2004.
ZHANG Fujun. Research on retaining and protecting structure with double-row piles[D]. Chengdu: Southwest Jiaotong University, 2004.
10 何启平.双排桩支护结构的有限元分析及工程应用[D].广州:华南理工大学, 2010.
HE Qiping. The finite element analysis and engineering application of double-row oile retaining structure[D]. Guangzhou: South China University of Technology, 2010.
11 陈育民, 徐鼎平. FLAC/FLAC3D基础与工程实例[M]. 北京: 中国水利水电出版社, 2008.
12 冯志先. FLAC3D对土钉支护机理的数值模拟分析[J]. 黄河水利职业技术学院学报, 2007, 19 (2): 26- 30.
doi: 10.3969/j.issn.1008-486X.2007.02.010
FENG Zhixian . Data simulation analysis of support principle to soil nail by FLAC3D[J]. Journal of Yellow River Conservancy Technical Institute, 2007, 19 (2): 26- 30.
doi: 10.3969/j.issn.1008-486X.2007.02.010
13 聂庆科, 胡建敏, 吴刚. 深基坑双排桩支护结构上的变形和土压力研究[J]. 岩土力学, 2008, 29 (11): 3089- 3094.
doi: 10.3969/j.issn.1000-7598.2008.11.035
NIE Qingke , HU Jianmin , WU Gang . Deformation and earth pressure of a double-row piles retaining struture for deep excavation[J]. Rock and Soil Mechanics, 2008, 29 (11): 3089- 3094.
doi: 10.3969/j.issn.1000-7598.2008.11.035
14 应宏伟, 初振环, 李冰河, 等. 双排桩支护结构的计算方法研究及工程应用[J]. 岩土力学, 2007, 28 (6): 1145- 1150.
doi: 10.3969/j.issn.1000-7598.2007.06.015
YING Hongwei , CHU Zhenhuan , LI Binghe . Study on calculation method of retaining structure with double-row piles and its application[J]. Rock and Soil Mechanics, 2007, 28 (6): 1145- 1150.
doi: 10.3969/j.issn.1000-7598.2007.06.015
15 林鹏, 王艳峰, 范志雄, 等. 双排桩支护结构在软土基坑工程中的应用分析[J]. 岩土工程学报, 2010, 32 (增刊2): 331- 334.
LIN Peng , WANG Yanfeng , FAN Zhixiong , et al. Application and analysis of retaining structure with double-row piles in soft ground excavation engineering[J]. Chinese Journal of Geotechnical Engineering, 2010, 32 (Suppl.2): 331- 334.
16 张俊发, 黄瑜, 闻建军, 等. 群桩基础的复合体模型建立与应用[J]. 岩土工程学报, 2006, 28 (9): 1064- 1069.
doi: 10.3321/j.issn:1000-4548.2006.09.003
ZHANG Junfa , HUANG Yu , WEN Jianjun , et al. Composite materials model research on grouped piles foundation[J]. Chinese Journal of Geotechnical Engineering, 2006, 28 (9): 1064- 1069.
doi: 10.3321/j.issn:1000-4548.2006.09.003
17 俞建霖, 曾开华, 温晓贵, 等. 深埋重力-门架式维护结构形状研究与应用[J]. 岩石力学与工程学报, 2004, 23 (9): 1578- 1584.
doi: 10.3321/j.issn:1000-6915.2004.09.031
YU Jianlin , ZENG Kaihua , WEN Xiaogui , et al. Behavior study on deeply-embedded gravity-frame retaining structure and its application[J]. Chinese Journal of Rock Mechanics and Engineering, 2004, 23 (9): 1578- 1584.
doi: 10.3321/j.issn:1000-6915.2004.09.031
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] WANG Su-yu,<\sup>,AI Xing<\sup>,ZHAO Jun<\sup>,LI Zuo-li<\sup>,LIU Zeng-wen<\sup> . Milling force prediction model for highspeed end milling 3Cr2Mo steel[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2006, 36(1): 1 -5 .
[2] ZHANG Yong-hua,WANG An-ling,LIU Fu-ping . The reflected phase angle of low frequent inhomogeneous[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2006, 36(2): 22 -25 .
[3] LI Kan . Empolder and implement of the embedded weld control system[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2008, 38(4): 37 -41 .
[4] KONG Xiang-zhen,LIU Yan-jun,WANG Yong,ZHAO Xiu-hua . Compensation and simulation for the deadband of the pneumatic proportional valve[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2006, 36(1): 99 -102 .
[5] CHEN Rui, LI Hongwei, TIAN Jing. The relationship between the number of magnetic poles and the bearing capacity of radial magnetic bearing[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2018, 48(2): 81 -85 .
[6] WANG Bo,WANG Ning-sheng . Automatic generation and combinatory optimization of disassembly sequence for mechanical-electric assembly[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2006, 36(2): 52 -57 .
[7] LI Ke,LIU Chang-chun,LI Tong-lei . Medical registration approach using improved maximization of mutual information[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2006, 36(2): 107 -110 .
[8] JI Tao,GAO Xu/sup>,SUN Tong-jing,XUE Yong-duan/sup>,XU Bing-yin/sup> . Characteristic analysis of fault generated traveling waves in 10 Kv automatic blocking and continuous power transmission lines[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2006, 36(2): 111 -116 .
[9] . [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2009, 39(1): 27 -32 .
[10] QIN Tong, SUN Fengrong*, WANG Limei, WANG Qinghao, LI Xincai. 3D surface reconstruction using the shape based interpolation guided by maximal discs[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2010, 40(3): 1 -5 .