Journal of Shandong University(Engineering Science) ›› 2022, Vol. 52 ›› Issue (5): 70-76.doi: 10.6040/j.issn.1672-3961.0.2022.174

Previous Articles    

Intelligent method based on convolutional neural network and analytic hierarchy process to predict frequency regulation ability of renewable energy power

WANG Zhiwei1, XU Haichao1*, GUO Xiangyang1, MA Jiong2, CHU Yunlong1, CHEN Qianchang1, LU Zhi3   

  1. 1. Northwest Branch, State Grid Corporation of China, Xi'an 710048, Shaanxi, China;
    2. Nanjing Branch, China Electric Power Research Institute Co., Ltd., Nanjing 210003, Jiangsu, China;
    3. Key Laboratory of Power System Intelligent Dispatch and Control of Ministry of Education(Shandong University), Jinan 250061, Shandong, China
  • Published:2022-10-20

CLC Number: 

  • TM615
[1] 王彩霞,李琼慧,雷雪姣.储能对大比例可再生能源接入电网的调频价值分析[J]. 中国电力,2016,49(10):148-152. WANG Caixia, LI Qionghui, LEI Xuejiao. Methodology for analyzing the value of energy storage to power system frequency control in context of high shares of renewable energy[J]. Electric Power, 2016, 49(10):148-152.
[2] 边晓燕,姜莹,赵耀,等.高渗透率可再生能源微电网的风柴荷协调调频策略[J]. 电力系统自动化,2018,42(15):102-109. BIAN Xiaoyan, JIANG Ying, ZHAO Yao, et al. Coordinated frequency regulation strategy of wind, diesel and load for microgrid with high-penetration renewable energy[J]. Automation of Electric Power Systems, 2018, 42(15):102-109.
[3] 赵大伟,马进,钱敏慧,等.光伏电站参与大电网一次调频的控制增益研究[J]. 电网技术,2019,43(2):425-435. ZHAO Dawei, MA Jin, QIAN Minhui, et al. Research on control gain for photovoltaic power plants participating in primary frequency regulation of large power grid[J]. Power System Technology, 2019, 43(2):425-435.
[4] 兰飞,潘益丰,时萌,等.双馈风电机组变系数虚拟惯量优化控制[J]. 电力系统自动化,2019,43(12):51-59. LAN Fei, PAN Yifeng, SHI Meng, et al. Optimal variable-coefficient virtual inertia control for DFIG-based wind turbines[J]. Automation of Electric Power Systems, 2019, 43(12):51-59.
[5] 孙骁强,刘鑫, 程松,等.光伏逆变器参与西北送端大电网快速频率响应能力实测分析[J]. 电网技术,2017,41(9):2792-2798. SUN Xiaoqiang, LIU Xin, CHENG Song, et al. Actual measurement and analysis of fast frequency response capacity of PV-inverters in northwest power grid[J]. Power System Technology, 2017, 41(9):2792-2798.
[6] 王卿卿,张志文,邵霞,等.风水协同模式下系统调频能力评估方法研究[J]. 电工技术,2020(21):16-20. WANG Qingqing, ZHANG Zhiwen, SHAO Xia, et al. Research on evaluation method of system frequency modulation ability under wind power and hydropower cooperation mode[J]. Electric Engineering, 2020(21):16-20.
[7] 张道田,杨文思,张扬,等.影响风电一次调频能力的参数选取[J]. 江西电力,2019,43(12):56-60. ZHANG Daotian, YANG Wensi, ZHANG Yang, et al. Selection of parameters affecting primary frequency regulation capability of wind power[J]. Jiangxi Electric Power, 2019, 43(12):56-60.
[8] 周勇良,余光正,刘建锋,等.基于改进长期循环卷积神经网络的海上风电功率预测[J]. 电力系统自动化,2021,45(3):183-191. ZHOU Yongliang, YU Guangzheng, LIU Jianfeng, et al. Offshore wind power prediction based on improved long-term recurrent convolutional neural network[J]. Automation of Electric Power Systems, 2021, 45(3):183-191.
[9] WANG Huaizhi, LI Gangqiang, WANG Guibin, et al. Deep learning based ensemble approach for probabilistic wind power forecasting[J]. Applied Energy, 2017, 188(15):56-70.
[10] 余光正,陆柳,汤波,等.基于云图特征提取的改进混合神经网络超短期光伏功率预测方法[J]. 中国电机工程学报,2021,41(20):6989-7003. YU Guangzheng, LU Liu, TANG Bo, et al. An improved hybrid neural network ultra-short-term photovoltaic power forecasting method based on cloud image feature extraction[J]. Proceedings of the CSEE, 2021, 41(20):6989-7003.
[11] 刘文杰,陈耀,宋晓宁,等.基于时域卷积网络精细化光伏发电功率预测[J]. 供用电,2020,37(10):76-82. LIU Wenjie, CHEN Yao, SONG Xiaoning, et al. A refined photovoltaic power prediction based on time domain convolutional network[J]. Distribution & Utilization, 2020, 37(10):76-82.
[12] 朱乔木,李弘毅,王子琪,等.基于长短期记忆网络的风电场发电功率超短期预测[J]. 电网技术,2017,41(12):3797-3802. ZHU Qiaomu, LI Hongyi, WANG Ziqi, et al. Short-term wind power forecasting based on LSTM[J]. Power System Technology, 2017, 41(12):3797-3802.
[13] 林君豪, 张焰,赵腾,等.基于改进卷积神经网络拓扑特征挖掘的配电网结构坚强性评估方法[J]. 中国电机工程学报,2019,39(1):84-96. LIN Junhao, ZHANG Yan, ZHAO Teng, et al. Structure strength assessment method of distribution network based on improved convolution neural network and network topology feature mining[J]. Proceeding of the CSEE, 2019, 39(1):84-96.
[14] 余印振,韩哲哲,许传龙.基于深度卷积神经网络和支持向量机的NOx浓度预测[J]. 中国电机工程学报,2022,42(1):238-248. YU Yinzhen, HAN Zhezhe, XU Chuanlong. NOx concentration prediction based on deep convolution neural network and support vector machine[J]. Proceeding of the CSEE, 2022, 42(1):238-248.
[15] 张海峥,张兴,李明,等.一种有功备用式光伏虚拟同步控制策略[J]. 电网技术,2019,43(2):514-520. ZHANG Haizheng, ZHANG Xing, LI Ming, et al. A photovoltaic virtual synchronous generator control strategy based on active power reserve[J]. Power System Technology, 2019, 43(2):514-520.
[16] 王天翔,程雪坤,李伟超,等.基于变参数减载控制的风电场一次调频策略[J]. 中国电力,2021,54(12):94-101. WANG Tianxiang, CHEN Xuekun, LI Weichao, et al. Primary frequency control strategy for wind farms based on variable parameter de-loading control[J]. Electric Power, 2021, 54(12):94-101.
[17] LALOR Gillian, MULLANE Alan, O'MALLEY Mark. Frequency control and wind turbine technologies[J]. IEEE Transactions on Power Systems, 2005, 20(4):1905-1913.
[18] MORREN Johan, DE HAAN S W H, KLING W L, et al. Wind turbines emulating inertia and supporting primary frequency control[J]. IEEE Transactions on Power Systems, 2006, 21(1):433-434.
[19] XIN Huanhai, LIU Yun, WANG Zhen, et al. A new frequency regulation strategy for photovoltaic systems without energy storage[J]. IEEE Transactions on Sustainable Energy, 2013, 4(4):985-993.
[20] NANOU Sotirios I, PAPAKONSTANTINOU Apostolos G, PAPATHANASSIOU Stavros A. A generic model of two-stage grid-connected PV systems with primary frequency response and inertia emulation[J]. Electric Power Systems Research, 2015, 127:186-196.
[21] 范高锋,王伟胜,刘纯,等.基于人工神经网络的风电功率预测[J]. 中国电机工程学报,2008,28(34):118-123. FAN Gaofeng, WANG Weisheng, LIU Chun, et al. Wind power prediction based on artificial neural network[J]. Proceedings of the CSEE, 2008, 28(34):118-123.
[22] 王昕,黄柯,郑益慧,等.基于PNN/PCA/SS-SVR的光伏发电功率短期预测方法[J]. 电力系统自动化,2016,40(17):156-162. WANG Xin, HUANG Ke, ZHENG Yihui, et al. Short-term forecasting method of photovoltaic output power based on PNN/PCA/PCA/SS-SVR[J]. Automation of Electric Power Systems, 2016, 40(17):156-162.
[1] Wenling JIANG,Yanqing ZHAO,Bo WANG,Shuanglei FENG,Yan PEI,Fei ZHANG. Photovoltaic power prediction method based on NWP irradiance inclination conversion [J]. Journal of Shandong University(Engineering Science), 2021, 51(5): 114-121.
[2] Shizhan SONG,Chuanyong WANG,Wenwen KANG,Jian ZHANG,Honghua YAN,Peng LI. Wind and PV installed capacity optimization with hybrid uncertainty of renewable energy [J]. Journal of Shandong University(Engineering Science), 2018, 48(6): 101-108.
[3] Shizhan SONG,Chuanyong WANG,Wenwen KANG,Jian ZHANG,Honghua YAN,Peng LI. PV installed capacity planning for power distribution network based on time series production simulation [J]. Journal of Shandong University(Engineering Science), 2018, 48(5): 131-136.
[4] CONG Yini, CAO Zenggong, MU Hong, WANG Chunyi, LIU Yutian. Scheme analysis on GW-scale coastal mud flat PV system connected to power grid [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2017, 47(6): 77-82.
[5] YIN Xiaomin, MENG Xiangjian, HOU Kunming, CHEN Yaxiao, GAO Feng. Correction method for historical output data of photovoltaic power plant considering spatial correlation based on artificial neural network [J]. Journal of Shandong University(Engineering Science), 2021, 51(4): 118-123.
[6] LI Zhi, YU Shaofeng, SU Yifang, WANG Wei, JIANG Hongtu, ZHANG Wei. Primary and secondary integration simulation technology of distribution network based on RTDS [J]. Journal of Shandong University(Engineering Science), 2020, 50(6): 112-117.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!