Journal of Shandong University(Engineering Science) ›› 2022, Vol. 52 ›› Issue (6): 131-138.doi: 10.6040/j.issn.1672-3961.0.2022.130
• 机器学习与数据挖掘 • Previous Articles
SHEN Xinjie, HUANG Jiashuang, DING Weiping*, SUN Ying, WANG Haipeng, JU Hengrong
CLC Number:
[1] THOMPSON P M, HAYASHI K M, DE Z G, et al. Dynamics of gray matter loss in Alzheimer′s disease[J]. Journal of Neuroscience, 2003, 23(3): 9941005. [2] SHENG J, XIN Y, ZHANG Q, et al. Predictive classification of Alzheimer′s disease using brain imaging and genetic data[J]. Scientific Reports, 2022, 12(1): 19. [3] COLE J H, LEECH R, SHARP D J, et al. Prediction of brain age suggests accelerated atrophy after traumatic brain injury[J]. Annals of Neurology, 2015, 77(4): 571581. [4] 黄嘉爽,接标,丁卫平,等.脑网络分析方法及其应用[J].数据采集与处理, 2021, 36(4):648663. HUANG Jiashuang, JIE Biao, DING Weiping, et al. Brain network analysis methods and their applications[J]. Data Acquisition and Processing, 2021, 36(4):648663. [5] WANG Q, HU K, WANG M, et al. Predicting brain age during typical and atypical development based on structural and functional neuroimaging[J]. Human Brain Mapping, 2021, 42(18): 59435955. [6] GOLD A L, ABEND R, BRITTON J C, et al. Age differences in the neural correlates of anxiety disorders: an fMRI study of response to learned threat[J]. American Journal of Psychiatry, 2020, 177(5): 454463. [7] HUANG J, ZHOU L, WANG L, et al. Attentiondiffusionbilinear neural network for brain network analysis[J]. IEEE Transactions on Medical Imaging, 2020, 39(7): 25412552. [8] KONG X, XU S, SUN Y, et al. Electroconvulsive therapy changes the regional resting state function measured by regional homogeneity (ReHo) and amplitude of low frequency fluctuations (ALFF) in elderly major depressive disorder patients: an exploratory study[J]. Psychiatry Research: Neuroimaging, 2017, 264: 1321. [9] LIEM F, VAROQUAUX G, KYNAST J, et al. Predicting brainage from multimodal imaging data captures cognitive impairment[J]. Neuroimage, 2017, 148: 179188. [10] FRANKE K, LUDERS E, MAY A, et al. Brain maturation: predicting individual BrainAGE in children and adolescents using structural MRI[J]. Neuroimage, 2012, 63(3): 13051312. [11] COLE J H. Multimodality neuroimaging brainage in UK biobank: relationship to biomedical, lifestyle, and cognitive factors[J]. Neurobiology of Aging, 2020, 92: 3442. [12] WANG Q, HU K, WANG M, et al. Predicting brain age during typical and atypical development based on structural and functional neuroimaging[J]. Human Brain Mapping, 2021, 42(18): 59435955. [13] 莫鸿飞,谢振平. 基于双通道深度CNN的烟雾浓度测量方法[J]. 模式识别与人工智能, 2021, 34(9):844852. MO Hongfei, XIE Zhenping. A twochannel deep CNNbased method for measuring smoke concentration[J]. Pattern Recognition and Artificial Intelligence, 2021, 34(9):844852. [14] 张昱,高凯龙,李继涛,等. 双通道多核卷积神经网络中文文本情绪分类方法[J]. 内蒙古大学学报(自然科学版), 2021, 52(5):508513. ZHANG Yu, GAO Kailong, LI Jitao, et al. A twochannel multicore convolutional neural network approach to Chinese text emotion classification[J]. Journal of Inner Mongolia University (Natural Science Edition), 2021, 52(5):508513. [15] PANIS G, LANITIS A, TSAPATSOULIS N, et al. Overview of research on facial ageing using the FGNET ageing database[J]. Let Biometrics, 2016, 5(2): 3746. [16] LURIE D J, KESSLER D, BASSETT D S, et al. Questions and controversies in the study of timevarying functional connectivity in resting fMRI[J]. Network Neuroscience, 2020, 4(1): 3069. [17] GENG X. Label distribution learning[J]. IEEE Transactions on Knowledge and Data Engineering, 2016, 28(7): 17341748. [18] GAO B B, XING C, XIE C W, et al. Deep label distribution learning with label ambiguity[J]. IEEE Transactions on Image Processing, 2017, 26(6): 28252838. [19] LI H, He X, YU Z, et al. Noiserobust image fusion with lowrank sparse decomposition guided by external patch prior[J]. Information Sciences, 2020, 523: 1437. [20] DE LANGE A M G, COLE J H. Commentary: correction procedures in brainage prediction[J]. Neuroimage: Clinical, 2020, 26:102229. [21] MOORE P J, LYONS T J, GALLACHER J, et al. Random forest prediction of Alzheimer′s disease using pairwise selection from time series data[J]. Plos One, 2019, 14(2): e0211558. [22] AYCHEH H M, SEONG J K, SHIN J H, et al. Biological brain age prediction using cortical thickness data: a large scale cohort study[J]. Frontiers in Aging Neuroscience, 2018, 10: 252. [23] LIAO L, ZHANG X, ZHAO F, et al. Multibranch deformable convolutional neural network with label distribution learning for fetal brain age prediction[C]//2020 IEEE 17th International Symposium on Biomedical Imaging (ISBI). Iowa City, United States: IEEE, 2020: 424427. [24] PENG H, GONG W, BECKMANN C F, et al. Accurate brain age prediction with lightweight deep neural networks[J]. Medical Image Analysis, 2021, 68: 101871. [25] HE S, PEREIRA D, PEREZ J D, et al. Multichannel attentionfusion neural network for brain age estimation:accuracy, generality, and interpretation with 16705 healthy MRIs across lifespan[J]. Medical Image Analysis, 2021, 72: 102091. |
[1] | Haigen MIN,Yukun FANG,Xia WU,Wuqi WANG. Fault diagnosis of vehicle-to-vehicle communication in networked traffic environment [J]. Journal of Shandong University(Engineering Science), 2021, 51(6): 84-92. |
[2] | LI Wei, WANG Zhechao, LI Shucai, DING Wantao, WANG Qi, ZONG Zhi, LIU Keqi. The mechanical properties of the silty clay and the advanced support method in Harbin Metro [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2018, 48(2): 61-71. |
[3] | YU Shaowei, QIN Ruiling, GUAN Jingjing, JI Can, FENG Shuo, JIANG Rui, LIU Yingning. Eco-driving model for connected and automated vehicle platoons using the traffic capacity remainder [J]. Journal of Shandong University(Engineering Science), 2022, 52(6): 23-29. |
|