Journal of Shandong University(Engineering Science) ›› 2023, Vol. 53 ›› Issue (1): 114-121.doi: 10.6040/j.issn.1672-3961.0.2021.372

• Others • Previous Articles     Next Articles

Analysis of screw extrusion dehydration efficiency based on micro element discrete model

Pengning GUO(),Wei LIU,Hao YUAN,Shuo FENG,Yangang WANG*()   

  1. School of Mechanical, Electrical & Information Engineering, Shandong University, Weihai 264200, Shandong, China
  • Received:2021-07-19 Online:2023-02-20 Published:2023-02-13
  • Contact: Yangang WANG E-mail:gpn@mail.sdu.edu.cn;wangyg@sdu.edu.cn

Abstract:

In order to study the effect of screw extrusion mechanism on the dewatering efficiency of food waste, a micro element discrete model connecting material characteristics and screw extrusion device parameters was constructed, combined with numerical simulation, the four factors affecting the dehydration efficiency of the unit, such as the initial moisture content of materials, the filling degree of materials, the form of spiral blades and the spiral speed, were theoretically calculated. In the process of building the model, the parameter scheme with relatively optimal dehydration efficiency was selected by using the analysis method of orthogonal test. The conclusion provided a theoretical basis for the design and selection of screw extrusion mechanism. The calculation results showed that the screw speed and material filling degree had a significant impact on the dehydration efficiency of the unit, and the maximum dehydration rates were up to 40% and 40.6%. The initial moisture content of materials and the form of spiral blades had little influence on the dehydration efficiency of the unit, and the maximum dehydration rates were only 16.6% and 14.8%. The orthogonal test results showed that the moisture content at the end of the material was 69.7% for variable pitch helical blade structure, under the condition that the initial moisture content of the material was 80%, the material filling coefficient was 75%, and the screw speed was 15 r/min. Considering the factors such as energy consumption, work efficiency and cost performance, the parameter condition had the most advantages in the actual working conditions.

Key words: food waste, screw extrusion, discrete model, solid-liquid separation, numerical simulation

CLC Number: 

  • TH122

Fig.1

Screw extrusion mechanism"

Fig.2

Modeling diagram of screw extrusion mechanism"

Fig.3

Wire frame drawing of screw extrusion mechanism"

Fig.4

The i-th micro-element segment seepage model"

Fig.5

The calculation process of solid-liquid separation in the i-th micro-element segment"

Fig.6

Parameter transfer of micro element segment"

Table 1

Spiral parameters"

常规螺距p/mm 螺旋叶片直径d/mm 叶片外径D/mm
80 40 80
流道长度l/mm 螺旋厚度e/mm 螺旋升角φ/(°)
480 3.5 27.26
变径锥角θ/(°) 变螺距p/mm
2.29 55、65、75、85、95、105

Fig.7

Effect of initial material moisture content on dehydration efficiency"

Fig.8

Effect of material filling coefficient on dehydration efficiency"

Fig.9

Effect of spiral form on dehydration efficiency"

Fig.10

Effect of screw speed on dehydration efficiency"

Table 2

Orthogonal level table of structural parameters"

因素水平 初始含水率/% 填充系数/% 螺旋形式 螺旋转速/(r·min-1)
1 95 80 类型1 15
2 90 75 类型2 20
3 85 70 类型3 25
4 80 65 类型4 30

Table 3

Data table of orthogonal experiment with four factors and four levels"

因素试验号 因素水平
初始含水率 填充系数 螺旋形式 螺旋转速
1 1 1 1 1
2 1 2 2 2
3 1 3 3 3
4 1 4 4 4
5 2 1 2 3
6 2 2 1 4
7 2 3 4 1
8 2 4 3 2
9 3 1 3 4
10 3 2 4 3
11 3 3 1 2
12 3 4 2 1
13 4 1 4 2
14 4 2 3 1
15 4 3 2 4
16 4 4 1 3

Fig.11

Analysis results of orthogonal parameters under conventional helical blade structure"

Fig.12

Analysis results of orthogonal parameters under the structure of variable diameter helical blade"

Fig.13

Analysis results of orthogonal parameters under the structure of variable pitch helical blade"

Fig.14

Analysis results of orthogonal parameters under variable diameter and pitch helical blade structure"

1 王凯军, 王婧瑶, 左剑恶, 等. 我国餐厨垃圾厌氧处理技术现状分析及建议[J]. 环境工程学报, 2020, 14 (7): 1735- 1742.
WANG Kaijun , WANG Jingyao , ZUO Jian'e , et al. Analysis and suggestion of current food waste anaerobic digestion technology in China[J]. Chinese Journal of Environmental Engineering, 2020, 14 (7): 1735- 1742.
2 饶玲华, 李军. 餐厨垃圾资源化处理方案对比分析[J]. 环境科学与技术, 2016, 39 (2): 237- 240.
RAO Linghua , LI Jun . Analysis and comparison of food waste resource treatment technologies[J]. Chinese Journal of Environmental Engineering, 2016, 39 (2): 237- 240.
3 SRIVASTAVA N , SRIVASTAVA M , ABD_ALLAH E F , et al. Biohydrogen production using kitchen waste as the potential substrate: a sustainable approach[J]. Chemosphere, 2021, 271, 129537.
doi: 10.1016/j.chemosphere.2021.129537
4 CAPSON-TOJO G , TRABLY E , ROUEZ M , et al. Dry anaerobic digestion of food waste and cardboard at different substrate loads, solid contents and co-digestion proportions[J]. Bioresource Technology, 2017, 233, 166- 175.
doi: 10.1016/j.biortech.2017.02.126
5 XU F , LI Y , GE X , et al. Anaerobic digestion of food waste: challenges and opportunities[J]. Bioresource Technology, 2018, 247, 1047- 1058.
doi: 10.1016/j.biortech.2017.09.020
6 班福忱, 孙晓昕, 刘鑫, 等. 自动分选+固液分离+油水分离工艺餐厨垃圾处理工程[J]. 环境工程, 2016, 34 (8): 145- 148.
BAN Fuchen , SUN Xiaoxin , LIU Xin , et al. Introduction to a food waste treatment project with automatic sorting, solid-liquid separation, and oil-water separation process[J]. Environmental Engineering, 2016, 34 (8): 145- 148.
7 ROSTI M E , PRAMANIK S , BRANDT L , et al. The breakdown of Darcy's law in a soft porous material[J]. Soft Matter, 2020, 16 (4): 939- 944.
doi: 10.1039/C9SM01678C
8 李鑫. 基于挤出理论的螺旋挤压脱水机机理研究[D]. 北京: 北京化工大学, 2011.
LI Xin. Mechanisim study of screw sqeezer based on extrud theory[D]. Beijing: Beijing University of Chemical Technology, 2011.
9 WAKEMAN R J . Separation technologies for sludge dewatering[J]. Journal of Hazardous Materials, 2007, 144 (3): 614- 619.
doi: 10.1016/j.jhazmat.2007.01.084
10 KUHN M , PERGAM P , BRIESEN H . Parameter estimation for incompressible cake filtration: advantages of a modified fitting method[J]. Chemical Engineering & Technology, 2020, 43 (3): 493- 501.
11 杨阳. 高黏度物料固液挤压分离技术与装备研究[D]. 北京: 北京化工大学, 2018.
YANG Yang. Research on solid-liquid extrusion separation technology and equipment for high viscosity materials[D]. Beijing: Beijing University of Chemical Technology, 2018.
12 赵扬. 滤饼微观结构与压榨过滤理论的研究[D]. 杭州: 浙江大学, 2006.
ZHAO Yang. Study on the microstructure of the filter cake and the expression filtration theory[D]. Hangzhou: Zhejiang University, 2006.
13 孙明文. 一维恒压压榨脱水理论在过滤机中应用[J]. 机械设计与制造, 2006, 3 (3): 49- 51.
SUN Mingwen . The application of one-dimensional constant pressure expression and dewatering theory in filter[J]. Machinery Design and Manufacture, 2006, 3 (3): 49- 51.
14 邱爱红, 龚曙光, 谢桂兰, 等. 变径变螺距螺旋轴参数化模型及性能仿真[J]. 机械工程学报, 2008, 44 (5): 131- 136.
QIU Aihong , GONG Shuguang , XIE Guilan , et al. Parametric model and performance simulation on the screw conveyor of variable diameters and variable pitches[J]. Chinese Journal of Mechanical Engineering, 2008, 44 (5): 131- 136.
15 武军, 范德顺. 间断式螺旋挤压过滤机[J]. 过滤与分离, 2008, 18 (1): 36- 37.
WU Jun , FAN Deshun . Interrupted screw filter[J]. Journal of Filtration & Separation, 2008, 18 (1): 36- 37.
16 HILLIG É , IWAKIRI S , HASELEIN C R , et al. Characterization of composites made of HDPE and furniture industry sawdust: Part Ⅱ: double-screw extrusion[J]. Ci ncia Florestal, 2011, 21 (2): 335- 347.
17 李佟, 李军, 刘伟岩, 等. 螺旋压榨式脱水机对污泥脱水的试验研究[J]. 中国给水排水, 2009, 25 (11): 66- 68.
LI Tong , LI Jun , LIU Weiyan , et al. Experimental research on sludge dewatering by screw press dehydrator[J]. China Water & Wastewater, 2009, 25 (11): 66- 68.
18 PRADHAN R C , MISHRA S , NAIK S N , et al. Oil expression from Jatropha seeds using a screw press expeller[J]. Biosystems Engineering, 2011, 109 (2): 158- 166.
19 赵维松. 螺旋挤压固液分离机构优化设计与试验[D]. 南京: 中国农业科学院, 2017.
ZHAO Weisong. Organization design and experiments of screw separator[D]. Nanjing: Chinese Academy of Agricultural Sciences, 2017.
20 ZHANG H R , ZHANG B . Research on screw-extrusion dehydration technology and equipment in recycling process of urban garbage[J]. Applied Mechanics and Materials, 2015, 768, 273- 280.
21 张龙龙. 秸秆螺旋挤压脱水机的数值模拟研究[D]. 郑州: 郑州大学, 2015.
ZHANG Longlong. Numerical simulation on screw extruder of straw[D]. Zhengzhou: Zhengzhou Univer-sity, 2015.
22 王延刚, 常皓, 王金帅, 等. 一种餐厨垃圾处理装置: 202010659259.2[P]. 2020-09-25.
23 孙邦雨. 城市餐厨垃圾固液分离技术与装备研究[D]. 北京: 北京化工大学, 2017.
SUN Bangyu. Research on municipal food waste solid-liquid separation and facility development[D]. Beijing: Beijing University of Chemical Technology, 2017.
24 CERVON N W , HARPER J M . Viscosity of an intermediate moisture dough[J]. Journal of Food Process Engineering, 1978, 2 (1): 83- 95.
[1] Yiming ZHANG,Yunpeng LI,Jing LI,Junyu CONG. Development of numerical calculation for coupled multi-field problems in cracked/porous media [J]. Journal of Shandong University(Engineering Science), 2022, 52(6): 63-78.
[2] Weiqin ZHENG,Jie XU,Jie SUN,Ke WU. Mechanical characteristics of TBM tunnel segment in composite stratum [J]. Journal of Shandong University(Engineering Science), 2022, 52(4): 210-213.
[3] TIAN Li,Wenzhe BI,Sarim Saleem SIDDIQUI,Kaiyue LIU. Review on structural resistance to downburst wind loads [J]. Journal of Shandong University(Engineering Science), 2021, 51(5): 32-41.
[4] LU Guangzhao, ZHOU Bo, XU Feng, SHANGGUAN Wei, WANG Gang, ZHANG Shubo. Stability analysis and construction mechanics of shallow buried bias tunnel openings [J]. Journal of Shandong University(Engineering Science), 2021, 51(4): 61-70.
[5] Chunguo WANG. Study on full face hard rock tunnel boring machine through the overpass in composite stratum [J]. Journal of Shandong University(Engineering Science), 2021, 51(3): 45-51.
[6] WANG Chunguo. Optimization of ventilation system of TBM tunnel construction and evaluation of dust suppression effect [J]. Journal of Shandong University(Engineering Science), 2021, 51(3): 52-60.
[7] SUN Jie, WU Ke, ZHENG Yang, LI Shuchen, YUAN Chao, WANG Xiuwei. Influence of TBM tunnel excavation at different positions on buildings [J]. Journal of Shandong University(Engineering Science), 2021, 51(1): 32-38.
[8] XU Zaigen, LIU Zhengwei, LIU Wenpeng, ZHOU Mengyao, LIU Juncai, TIAN Li. Calculation method of the single-double angle joints in transmission towers [J]. Journal of Shandong University(Engineering Science), 2021, 51(1): 87-93.
[9] SU Sibo, WANG Guoqing, JIA Xianzhuo, LI Zhicong, HUANG Zhigang. Influence of shear span ratio on seismic performance of hollow pipe pier with slot connection [J]. Journal of Shandong University(Engineering Science), 2021, 51(1): 39-45.
[10] CAO Hongzhen, QI Jinsheng, YUAN Baoqiang, DU Wenjing, WANG Zhan. Numerical simulation of the tangent circular-to-rectangular transition duct [J]. Journal of Shandong University(Engineering Science), 2020, 50(5): 77-82.
[11] Jinsheng QI,Hongzhen CAO,Yan SHI,Wenjing DU,Zhan WANG. Optimization of the inner deflector of the shrimp-waist elbow [J]. Journal of Shandong University(Engineering Science), 2020, 50(5): 64-69, 76.
[12] CHEN Yucheng, WANG Zhaoyang, GUO Ming, LIN Peng. Influence of concealed karst cave on surrounding rock stability and its treatment technology [J]. Journal of Shandong University(Engineering Science), 2020, 50(5): 33-43.
[13] WANG Chunguo. Mechanical behavior of large-span and small spacing road tunnel with biased pressure [J]. Journal of Shandong University(Engineering Science), 2020, 50(4): 85-89.
[14] Wei HU. Flow resistance characteristics of wire mesh porous media channel based on pore-scale [J]. Journal of Shandong University(Engineering Science), 2019, 49(6): 119-126.
[15] Huilin ZHOU,Yan QIU. Phase change characteristics of paraffin in rectangular storage unit [J]. Journal of Shandong University(Engineering Science), 2019, 49(4): 99-107.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] WANG Su-yu,<\sup>,AI Xing<\sup>,ZHAO Jun<\sup>,LI Zuo-li<\sup>,LIU Zeng-wen<\sup> . Milling force prediction model for highspeed end milling 3Cr2Mo steel[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2006, 36(1): 1 -5 .
[2] ZHANG Yong-hua,WANG An-ling,LIU Fu-ping . The reflected phase angle of low frequent inhomogeneous[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2006, 36(2): 22 -25 .
[3] LI Kan . Empolder and implement of the embedded weld control system[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2008, 38(4): 37 -41 .
[4] SHI Lai-shun,WAN Zhong-yi . Synthesis and performance evaluation of a novel betaine-type asphalt emulsifier[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2008, 38(4): 112 -115 .
[5] KONG Xiang-zhen,LIU Yan-jun,WANG Yong,ZHAO Xiu-hua . Compensation and simulation for the deadband of the pneumatic proportional valve[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2006, 36(1): 99 -102 .
[6] LAI Xiang . The global domain of attraction for a kind of MKdV equations[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2006, 36(1): 87 -92 .
[7] YU Jia yuan1, TIAN Jin ting1, ZHU Qiang zhong2. Computational intelligence and its application in psychology[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2009, 39(1): 1 -5 .
[8] LI Liang, LUO Qiming, CHEN Enhong. Graph-based ranking model for object-level search
[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2009, 39(1): 15 -21 .
[9] CHEN Rui, LI Hongwei, TIAN Jing. The relationship between the number of magnetic poles and the bearing capacity of radial magnetic bearing[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2018, 48(2): 81 -85 .
[10] WANG Bo,WANG Ning-sheng . Automatic generation and combinatory optimization of disassembly sequence for mechanical-electric assembly[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2006, 36(2): 52 -57 .