Journal of Shandong University(Engineering Science) ›› 2021, Vol. 51 ›› Issue (4): 91-98.doi: 10.6040/j.issn.1672-3961.0.2020.539
• Electrical Engineering • Previous Articles Next Articles
Xiaoyan QI1(),Hengjie LIU1,Qiuhua HOU1,Xiaoyu LIU1,Yanchao TAN1,Liancheng WANG2,*(
)
CLC Number:
1 | 康重庆, 夏清. 电力系统负荷预测[M]. 北京: 中国电力出版社, 2017. |
2 |
LI B , ZHANG J , HE Y , et al. Short-term load forecasting method based on wavelet decomposition with second-order gray neural network model combined with ADF test[J]. IEEE Access, 2017, 5, 16324- 16331.
doi: 10.1109/ACCESS.2017.2738029 |
3 |
NOSE-FILHO K , LOTUFO A D P , MINUSSI C R . Short-term multimodal load forecasting using a modified general regression neural network[J]. IEEE Transactions on Power Delivery, 2011, 26 (4): 2862- 2869.
doi: 10.1109/TPWRD.2011.2166566 |
4 |
牛东晓, 谷志红, 邢棉, 等. 基于数据挖掘的SVM短期负荷预测方法研究[J]. 中国电机工程学报, 2006, 26 (18): 6- 12.
doi: 10.3321/j.issn:0258-8013.2006.18.002 |
NIU Xiaodong , GU Zhihong , XING Mian , et al. Study on forecasting approach to short-term load of SVM based on data mining[J]. Proceedings of the CSEE, 2006, 26 (18): 6- 12.
doi: 10.3321/j.issn:0258-8013.2006.18.002 |
|
5 | 赵登福, 王蒙, 张讲社, 等. 基于支撑向量机方法的短期负荷预测[J]. 中国电机工程学报, 2002, 22 (4): 27- 31. |
ZHAO Dengfu , WANG Meng , ZHANG Jiangshe , et al. A support vector machine approach for short term load forecasting[J]. Proceedings of the CSEE, 2002, 22 (4): 27- 31. | |
6 | 王刚. 基于极限学习机的时间序列预测[D]. 沈阳: 沈阳工业大学, 2019. |
WANG Gang. Time series prediction based on extreme learning machine[D]. Shenyang: Shenyang University of Technology, 2019. | |
7 | YU X, XU Z, ZHOU X, et al. Load forecasting based on smart meter data and gradient boosting decision tree[C]// Proceeding of 2019 Chinese Automation Congress (CAC). Hangzhou: IEEE, 2019: 4438-4442. |
8 | XIE Z, WANG R, WU Z, et al. Short-term power load forecasting model based on fuzzy neural network using improved decision tree[C]//Proceeding of 2019 IEEE Sustainable Power and Energy Conference (iSPEC). Beijing: IEEE, 2019: 482-486. |
9 | 谭忠良. 基于BP神经网络实现钢铁厂电力系统负荷预[J]. 冶金自动化, 2015, S1 (增刊1): 370- 372. |
10 |
梁青艳, 孙彦广. 钢铁企业电力负荷动态预测建模问题的应用研究[J]. 科学技术与工程, 2018, 18 (16): 44- 54.
doi: 10.3969/j.issn.1671-1815.2018.16.008 |
LIANG Qingyan , SUN Yanguang . Investigation on application of electricity load dynamic forecast modelling in iron and steel enterprises[J]. Science Technology and Engineering, 2018, 18 (16): 44- 54.
doi: 10.3969/j.issn.1671-1815.2018.16.008 |
|
11 |
杨甲甲, 刘国龙, 赵俊华, 等. 采用长短期记忆深度学习模型的工业负荷短期预测方法[J]. 电力建设, 2018, 39 (10): 20- 27.
doi: 10.3969/j.issn.1000-7229.2018.10.003 |
YANG Jiajia , LIU Guolong , ZHAO Junhua , et al. A long short term memory based deep learning method for industrial load forecasting[J]. Electric Power Construction, 2018, 39 (10): 20- 27.
doi: 10.3969/j.issn.1000-7229.2018.10.003 |
|
12 |
李明, 王智灵, 杨晓宇, 等. 突变期电力负荷预测方法及其应用[J]. 电力系统自动化, 2006, (10): 93- 96.
doi: 10.3321/j.issn:1000-1026.2006.10.019 |
LI Ming , WANG Zhiling , YANG Xiaoyu , et al. Power load forecasting method and its application in abrupt change period[J]. Power System Automation, 2006, (10): 93- 96.
doi: 10.3321/j.issn:1000-1026.2006.10.019 |
|
13 |
毛勇华, 桂小林, 李前, 等. 深度学习应用技术研究[J]. 计算机应用研究, 2016, 33 (11): 3201- 3205.
doi: 10.3969/j.issn.1001-3695.2016.11.001 |
MAO Yonghua , GUI Xiaolin , LI Qian , et al. Study on application technology of deep learning[J]. Application Research of Computers, 2016, 33 (11): 3201- 3205.
doi: 10.3969/j.issn.1001-3695.2016.11.001 |
|
14 |
周林, 吕厚军. 人工神经网络应用于电力系统短期负荷预测的研究[J]. 四川电力技术, 2008, 31 (6): 68- 72.
doi: 10.3969/j.issn.1003-6954.2008.06.021 |
ZHOU Lin , LV Houjun . ANN application to short term load forecasting research of power system[J]. Sichuan Electric Power Technology, 2008, 31 (6): 68- 72.
doi: 10.3969/j.issn.1003-6954.2008.06.021 |
|
15 | 王晨辉, 张晓亮, 梁晓传. 云计算架构下基于BP神经网络负载预测策略的研究[J]. 电力信息与通信技术, 2016, 14 (11): 46- 50. |
WANG Chenhui , ZHANG Xiaoliang , LIANG Xiaochuan . Research on load forecasting strategy based on BP neural network under cloud computing architectures[J]. Electric Power Information and Communication Technology, 2016, 14 (11): 46- 50. | |
16 | 谢伟, 赵琦, 郭乃网, 等. 改进的并行模糊核聚类算法在电力负荷预测的应用[J]. 电测与仪表, 2019, 56 (11): 49- 54. |
XIE Wei , ZHAO Qi , GUO Naiwang , et al. Powered big data clustering algorithm based on multi-kernel fuzzy C-means clustering[J]. Electrical Measurement & Instrumentation, 2019, 56 (11): 49- 54. | |
17 | 张冠英, 羡一鸣, 葛磊蛟, 等. 经济新常态下基于Verhulst-SVM的中长期负荷预测模型[J]. 电测与仪表, 2019, 56 (1): 102- 107. |
ZHANG Guanying , XIAN Yiming , GE Leijiao , et al. Medium and long term load forecasting model based on verhulst-svm under new normal economy[J]. Electrical Measurement & Instrumentation, 2019, 56 (1): 102- 107. | |
18 | 李永通, 陶顺, 赵蕾, 等. 基于短时间尺度相关性聚类的负荷预测[J]. 电测与仪表, 2019, 56 (16): 32- 38. |
LI Yongtong , TAO Shun , ZHAO Lei , et al. Load forecasting based on short-term correlation clustering[J]. Electrical Measurement & Instrumentation, 2019, 56 (16): 32- 38. | |
19 | 陈振宇, 刘金波, 李晨, 等. 基于LSTM与XGBoost组合模型的超短期电力负荷预测[J]. 电网技术, 2020, 44 (2): 614- 620. |
CHEN Zhenyu , LIU Jinbo , LI Chen , et al. Ultra short-term power load forecasting based on combined LSTM-XGBoost model[J]. Power System Technology, 2020, 44 (2): 614- 620. | |
20 | 王宁, 谢敏, 邓佳梁, 等. 基于支持向量机回归组合模型的中长期降温负荷预测[J]. 电力系统保护与控制, 2016, 44 (3): 92- 97. |
WANG Ning , XIE Min , DENG Jialiang , et al. Mid-long term temperature-lowering load forecasting based on combination of support vector machine and multiple regression[J]. Power System Protection and Control, 2016, 44 (3): 92- 97. | |
21 | 刘玉田, 孙润稼, 王洪涛, 等. 人工智能在电力系统恢复中的应用综述[J]. 山东大学学报(工学版), 2019, 49 (5): 1- 8. |
LIU Yutian , SUN Runjia , WANG Hongtao , et al. Review on application of artificial intelligence in power system restoration[J]. Journal of Shandong University (Engineering Science), 2019, 49 (5): 1- 8. | |
22 | 梁志祥, 刘晓明, 牟颖, 等. 基于深度学习的新能源爬坡事件预测方法[J]. 山东大学学报(工学版), 2019, 49 (5): 24- 28. |
LIANG Zhixiang , LIU Xiaoming , MU Ying , et al. Prediction method of wind power and PV ramp event based on deep learning[J]. Journal of Shandong University (Engineering Science), 2019, 49 (5): 24- 28. | |
23 | 黄任可, 罗谌持, 张明. 基于粒子滤波器的大容量冲击负荷短期预测方法[J]. 电力系统自动化, 2009, 33 (3): 40- 45. |
WANG Renke , LUO Chenchi , ZHANG Ming . Short-term forecasting of the high-capacity impact load based on particle filters[J]. Automation of Electric Power Systems, 2009, 33 (3): 40- 45. | |
24 | 李云飞, 张鹏, 程鹏飞, 等. 大数据挖掘下冲击性负荷特性电网短期负荷预测的探索与实践[J]. 电力大数据, 2019, 22 (4): 80- 86. |
LI Yunfei , ZHANG Peng , CHENG Pengfei , et al. Exploration and practice of short-term load forecasting of power grid with impact load characteristics under big data mining[J]. Power Systems and Big Data, 2019, 22 (4): 80- 86. | |
25 | 赵威. 基于大数据的短期负荷预测关键技术研究[D]. 山东大学, 2019, 22(4): 80-86. |
ZHAO Wei. Research on key technologies of short-term load forecasting based on big data[D]. Jinan: Shandong University, 2019, 22(4): 80-86. | |
26 | 张鑫. 基于支持向量机的能源管理系统短期负荷预测[D]. 长春: 长春工业大学, 2010. |
ZHANG Xin. Short term load forecasting of energy management system based on support vector machine[D]. Changchun: Changchun University of Technology, 2010. | |
27 | 郑静, 杜秀华, 史新祈. 大型钢铁企业电力负荷的短期预测研究[J]. 电力需求侧管理, 2004, 6 (1): 18- 21. |
ZHENG Jing , DU Xiuhua , SHI Xinqi . Research on short term load forecasting in steel enterprise[J]. Power Demand Management, 2004, 6 (1): 18- 21. |
[1] | LIAO Yi, LUO Wei, JIANG Fengwei, LI Yajin, YU Dayang. Prediction of converter valve cooling capacity and water inlet temperature based on LSTM [J]. Journal of Shandong University(Engineering Science), 2021, 51(4): 124-130. |
[2] | TAO Liang, LIU Baoning, LIANG Wei. Automatic detection research of arrhythmia based on CNN-LSTM hybrid model [J]. Journal of Shandong University(Engineering Science), 2021, 51(3): 30-36. |
[3] | LIU Shuai, WANG Lei, DING Xutao. Emotional EEG recognition based on Bi-LSTM [J]. Journal of Shandong University(Engineering Science), 2020, 50(4): 35-39. |
[4] | Longmao HU,Xuegang HU. Identification of the same product feature based on multi-dimension similarity and sentiment word expansion [J]. Journal of Shandong University(Engineering Science), 2020, 50(2): 50-59. |
[5] | Yunyang YAN,Huizhen ZHANG,Yi′an LIU,Shangbing GAO. Video flame detection based on GMM and 3D-LBP feature [J]. Journal of Shandong University(Engineering Science), 2019, 49(1): 1-9. |
[6] | LIU Yan, LI Youjun, CHEN Meng. Research on the classification of resting state EEG signal between depression patients and normal controls by EMD and SVM methods [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2017, 47(3): 21-26. |
[7] | ZHANG Yuling, YIN Chuanhuan. Android malware detection based on SVM [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2017, 47(1): 42-47. |
[8] | YAN Yun-yang1,2, TANG Yan-yan2, LIU Yi-an2, ZHANG Tian-yi3. Flame detection based on LBP features with multiscales and SVM [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2012, 42(5): 47-52. |
[9] | PAN Dong-yin, ZHU Fa, XU Sheng, YE Ning*. Feature selection of gene expression profiles of colon cancer [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2012, 42(2): 23-29. |
[10] | LIU Hai-chun,XIE Shao-jun,WANG Guo-feng . A novel hybrid current control method applied in threephase four leg APF [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2007, 37(6): 10-14 . |
[11] | WANG Sheng-chun,HAN Jie,LI Zhi-nong,LI Jian-feng . The fault diagnosis method based on ambiguity domain and support vector machine [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2006, 36(6): 116-120 . |
[12] | ZHU Xiao-xia,SUN Tong-jing,CHEN Gui-you . Research of fingerprint classification combined by binary tree and SVM [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2006, 36(1): 121-124 . |
|