Journal of Shandong University(Engineering Science) ›› 2020, Vol. 50 ›› Issue (6): 118-128.doi: 10.6040/j.issn.1672-3961.0.2019.574

Previous Articles    

The effect of barbed electrodes parameters on the discharge characteristics and particles removal efficiency

WANG Lei1, LI Mingzhen2, WANG Xiang3*   

  1. 1.State Grid Shouguang Power Supply Company, State Grid Shandong Electric Power Company, Shouguang 262700, Shandong, China;
    2. Yuexiu Power Supply Bureau, Guangzhou Power Supply Bureau Co., Ltd., Yuexiu 510000, Guangzhou, China;
    3. National Engineering Laboratory for Coal-Fired Pollutants Emission Reduction, Shandong University, Jinan 250061, Shandong, China
  • Published:2020-12-15

Abstract: To study the effect of design parameters on discharge characteristic and particles removal efficiency of the barbed electrodes, a test bench was built and the discharge current and PM2.5、PM10 removal efficiency of the discharge electrode with various barb thickness δ and spacing L under different applied voltage and dust concentration were studied. The results showed that the thinner barb was better at discharging and removing fine particles than the thicker one, especially for the particles in 0.2~2 μm. The effect of the thinner barb on the particles removal efficiency was dramatically obvious in the case of a lower applied voltages and higher mass concentration. The discharge current and particles removal efficiency firstly increased to the maximum and then decreased with barb spacing decreasing. The discharge current was the largest when the barb spacing was 50 mm, while the particles removal efficiency was highest when the barb spacing was 80 mm. The results could provide references for the selection and design of barbed discharge electrodes in the electrostatic precipitator.

Key words: electrostatic precipitator, barbed electrodes, barb thickness, barb spacing, discharge current, fine particle

CLC Number: 

  • TM89
[1] 闫克平, 李树然, 冯卫强, 等. 高电压环境工程应用研究关键技术问题分析及展望[J]. 高电压技术, 2015, 41(8): 2528-2544. YAN Keping, LI Shuran, FENG Weiqiang, et al. Analysis and prospect on key technology of high-voltage discharge for environmental engineering study and application[J]. High Voltage Engineering, 2015, 41(8): 2528-2544.
[2] 徐纯燕, 常景彩, 王翔, 等. 亲水改性碳钢极板用于PM2.5脱除[J]. 化工学报, 2016, 67(10): 4446-4454. XU Chunyan, CHANG Jingcai, WANG Xiang, et al. Experimental study of PM2.5 removal using hydrophilic modified carbon steel collector[J]. CIESC Journal, 2016, 67(10): 4446-4454.
[3] JAWOREK A, KRUPA A, CZECH T. Modern electrostatic devices and methods for exhaust gas cleaning: a brief review[J]. Journal of Electrostatics, 2007, 65(3): 133-155.
[4] 邓云峰, 刘功智, 张国权. 宽间距长芒刺静电除尘技术的应用[J]. 中国安全科学学报, 2004, 13(10): 41-44. DENG Yunfeng, LIU Gongzhi, ZHANG Guoquan. Application of electrostatic precipitators with wider electrode spacing and longer discharge spine electrode[J]. China Safety Science Journal, 2004, 13(10): 41-44.
[5] 党小庆, 杨春方, 王迪, 等. 电除尘器收尘极板表面电流密度分布实验研究[J]. 重型机械, 2005(2): 32-35. DANG Xiaoqing, YANG Chunfang, WANG Di, et al. Experiment on current density distribution on plate of different combinations of discharge electrodes with collecting plates[J]. Heavy Machinery, 2005(2): 32-35.
[6] 王翔, 常景彩, 徐纯燕, 等. 线-板式静电除尘器芒刺电极放电特性[J]. 高电压技术, 2017, 43(2): 533-540. WANG Xiang, CHANG Jingcai, XU Chunyan, et al. Discharge characteristic of barbed electrodes in wire-plate electrostatic precipitator[J]. High Voltage Engineering, 2017, 43(2): 533-540.
[7] 胡满银, 高香林, 胡志光, 等. 电极结构对放电性能影响的试验研究[J]. 华北电力学院学报, 1988(4): 009. HU Manyin, GAO Xianglin, HU Zhiguang, et al. Research on discharge performances of corona wires in electrostatic precipitators[J]. Journal of North China Institute of Electric Power, 1988(4): 009.
[8] 郭尹亮,向晓东,陈宝智.芒刺-板式电除尘器收尘极板电流密度分布规律研究[J].安全与环境学报,2008,8(6):53-56. GUO Yinliang, XIANG Xiaodong, CHEN Baozhi. Investigation of the current density distribution regularity in a nail-plate ESP[J]. Journal of Safety and Environment, 2008, 8(6): 53-56.
[9] MCKINNEY P J, DAVUDSON J H, LEONE D M. Current distributions for barbed plate-to-plane coronas[J]. IEEE Transactions on Industry Applications, 1992, 28(6): 1424-1431.
[10] GUO B Y, GUO J, YU A B. Simulation of the electric field in wire-plate type electrostatic precipitators[J]. Journal of Electrostatics, 2014, 72(4): 301-310.
[11] 郭尹亮, 向晓东, 盖龄童. 芒刺电除尘器板电流密度分布及芒刺间距优化[J]. 高电压技术, 2010(4): 1021-1025. GUOYinlang, XIANG Xiaodong, GAI Lingtong. Experimental approach on current density distribution and optimizing distance of barb corona electrodes in ESP[J]. High Voltage Engineering, 2010(4): 1021-1025.
[12] JEDRUSIK M, SWIERCZOK A. The correlation between corona current distribution and collection of fine particles in a laboratory-scale electrostatic precipitator[J]. Journal of Electrostatics, 2013, 71(3): 199-203.
[13] JEDRUSIK M, SWIERCZOK A, TEISSEYRE R. Experimental study of fly ash precipitation in a model electrostatic precipitator with discharge electrodes of different design[J]. Powder Technology, 2003, 135: 295-301.
[14] 徐明铭.空气湿度对直流电晕放电影响的研究[D].济南:山东大学,2014. XU Mingming. Study on influences of air humidity on direct current corona discharge[D]. Jinan: Shandong University, 2014.
[15] BESSIERES D, PAILLOL J, SOULEM N. Negative corona triggering in air[J]. Journal of Applied Physics, 2004, 95(8): 3943-3951.
[16] BAYLESS D J, ALAM M K, RADCLIFF R, et al. Membrane-based wet electrostatic precipitation[J]. Fuel Processing Technology, 2004, 85(6): 781-798.
[17] FLAGAN R C, SEINFELD J H. Fundamentals of air pollution engineering[M]. Chicago, USA: CRRC, 2012.
[18] WHITE H J. Industrial electrostatic precipitation[M]. NewYork, USA: Wesley, 1963.
[19] ZHUANG Y, KIM Y J, LEE T G, et al. Experimental and theoretical studies of ultra-fine particle behavior in electrostatic precipitators[J]. Journal of Electrostatics, 2000, 48(3): 245-260.
[20] GOO J H, LEE J W. Monte-Carlo simulation of turbulent deposition of charged particles in a plate-plate electrostatic precipitator[J]. Aerosol Science and Technology, 1996, 25(1): 31-45.
[21] IETAA C, KUCEROVSKY Z, GREASON W D. Current density modeling of a linear pin-plane array corona discharge[J]. Journal of Electrostatics, 2008, 66(11): 589-593.
[22] 郭尹亮, 向晓东, 盖龄童. 芒刺电除尘器板电流密度分布及芒刺间距优化[J]. 高电压技术, 2010, 36(4): 1021-1025. GUO Yinliang, XIANG Xiaodong, GAI Lingtong. Experimental approach on current density distribution and optimizing distance of barb corona electrodes in ESP[J]. High Voltage Engineering, 2010, 369(4): 1021-1025.
[23] 亢燕铭, 荣美丽, 沈恒根, 等. 空气净化过程中的电晕放电与离子风[J]. 自然杂志, 2002, 24(3): 125-129. KANG Yanming, RONG Meili, SHEN Henggen, el at. Corona discharge and ionic wind in air cleaning processes[J]. Chinese Journal of Nature, 2002, 24(3): 125-129.
[24] DAVIDSON J H, SHAUGHNESSY E J. Turbulence generation by electric body forces[J]. Experiments in Fluids, 1986, 4(1): 17-26.
[25] 王晓华. 静电场中水对颗粒物脱除增强机理与过程[D]. 北京: 清华大学, 2013. WANG Xiaohua. Enhancement mechanism and process of water on particle removal in electrostatic filed[D]. Beijing: Tsinghua University, 2011.
[26] 常景彩. 柔性集尘极应用于燃煤脱硫烟气深度净化的试验研究[D]. 济南: 山东大学, 2011. CHANG Jingcai. Experimental study on flexible collection electrode applied in advanced purification for coal-fired flue gas following WFGD[D]. Jinan: Shandong University, 2011.
[27] 熊桂龙, 李水清, 陈晟, 等. 增强PM2.5脱除的新型电除尘技术的发展[J]. 中国电机工程学报, 2015, 35(9): 2217-2223. XIONG Guilong, LI Shuiqing, CHEN Shen, el at. Development of advanced electrostatic precipitation technologies for reducing PM2.5 emissions from coal-fired power plants[J]. Proceedings of the CSEE, 2015, 35(9):2217-2223.
[1] WANG Lei, ZHANG Yulei, LI Zhaodong, ZHANG Jinfeng, WANG Xiang. Effect of gas components on the discharge characteristics of the wet electrostatic precipitator [J]. Journal of Shandong University(Engineering Science), 2020, 50(5): 83-89.
[2] , . Flow model of nozzle for superfine particles preparation using rapid expansion of supercritical solution [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2007, 37(4): 0-0 .
[3] LIU Yan,WANG Wei-qiang,QU Yan-peng,JIN Yong,XING Xiao-wei . Flow model of a nozzle for superfine particles by using rapid expansion of a supercritical solution [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2007, 37(4): 45-49 .
Full text



No Suggested Reading articles found!