Journal of Shandong University(Engineering Science) ›› 2020, Vol. 50 ›› Issue (1): 82-94.doi: 10.6040/j.issn.1672-3961.0.2019.178

• Electrical Engineering • Previous Articles     Next Articles

Imprecise conditional probability prediction of wind power ramp events

Bo WANG1(),Buwei WANG1,Ming YANG2,*(),Yuanchun ZHAO3,Wenli ZHU2   

  1. 1. State Key Laboratory of Operation and Control of Renewable Energy & Storage Systems, China Electric Power Research Institute, Beijing 100192, China
    2. Key Laboratory of Power System Intelligent Dispatch and Control of Ministry of Education, Shandong University, Jinan 250061, Shandong, China
    3. tate Grid Jinan Power Company, Jinan 250012, Shandong, China
  • Received:2019-04-19 Online:2020-02-20 Published:2020-02-14
  • Contact: Ming YANG E-mail:wangbo@epri.sgcc.com.cn;myang@sdu.edu.cn
  • Supported by:
    国家电网公司科技项目(5215001600V4)

Abstract:

Wind power ramp events (WPRE) could easily destroy the active power balance of the power system, as well as did harm to the frequency stability and power quality, which threatened the safe and stable operation of power grid. A novel imprecise conditional probability prediction approach was proposed based on the credal network (CN), which could provide the interval range of the occurrence probability of each WPRE state. The approach excavated the dependence relationships between WPRE and meteorological variables using the greedy search algorithm, and constructed a CN structure to express the relationships in an abstract way. The proposed approach extended the imprecise Dirichlet model (IDM) on hyperparameter settings to quantify the uncertain conditional dependences among the variables, thus to realize the parameter estimation of the CN. Based on the constructed CN model, a CN probability inference algorithm was employed to estimate the imprecise probability distribution of the multi-state WPRE. The case study with wind-farm operating measurements in Ningxia Province demonstrated that the proposed approach had excellent performance even under the prediction scenarios with insufficient samples.

Key words: imprecise probability, wind ramp, credal network, imprecise Dirichlet model

CLC Number: 

  • TM614

Fig.1

The flowchart of GS algorithm applied for CN structure learning"

Fig.2

The simple three-node network structure example"

Fig.3

Key steps of the WPRE imprecise probability distribution prediction"

Table 1

The division of the ramp states"

需满足的条件 爬坡状态
Pt_max-Pt_min>5.2 MW且t_max≥t_min 上爬坡
Pt_max-Pt_min>5.2 MW且t_max < t_min 下爬坡
|Pt_max-Pt_min|≤5.2 MW 不爬坡

Table 2

The division of the training set and validation set"

数据集名称 时间跨度 样本容量
训练集 2015年1月1日0:00—2015年12月31日23:45 34 516
验证集 2016年1月1日0:00—2017年12月31日23:45 66 626

Table 3

The division of the variable states in CN"

节点变量 风速最大波动量
V/(m·s-1)
风速
S/(m·s-1)
风向D/(°) 温度T/℃ 湿度h/% 爬坡事件H
(最大功率波动量)/MW
状态1 [-16, -1.77) [0, 3.09) [0, 144) [-22, 5.17) [9, 36.2) [-5.2, 5.2]
状态2 [-1.77, 1.48) [3.09, 5.41) [144, 252) [5.17, 16.77) [36.2, 59.93) (5.2, 36]
状态3 [1.48, 16.7) [5.41, 24) [252, 360) [16.77, 36.5) [59.93, 98.49) [-36, -5.2)

Fig.4

The optimal CN structure constructed by the GS algorithm"

Table 4

Prediction performance of the models using CWC index"

λ/% 模型 PICP/% PINAW CWC 宽度>10%的
区间占比/%
宽度>20%的
区间占比/%
宽度>30%的
区间占比/%
宽度>50%的区间占比/%
90 CN 86.97 0.195 4 0.553 8 89.30 42.39 10.70 0.00
CLT 65.71 0.232 2 30.150 0 71.74 51.30 37.04 4.32
75 CN 73.39 0.144 4 0.343 8 73.66 17.70 3.29 0.00
CLT 57.06 0.162 4 6.029 1 62.83 38.68 18.79 0.00
60 CN 57.20 0.106 9 0.294 1 48.15 5.76 0.41 0.00
CLT 47.60 0.118 8 1.537 6 51.99 25.10 0.00 0.00

Fig.5

The imprecise probability distributions of WPRE predicted under 7 meteorological conditions"

Table 5

Prediction performance of the models using WCWS index"

wt1 类型 模型 PICP/% PINAW WCWS
0.3 冒险型 CN 67.08 0.127 0 0.112 3
CLT 56.38 0.157 9 0.058 6
0.5 中立型 CN 76.82 0.157 8 0.305 2
CLT 56.38 0.157 9 0.203 0
0.7 稳健型 CN 87.65 0.198 4 0.554 1
CLT 56.38 0.157 9 0.347 3

Table 6

The redefined states of variable D and T"

节点变量 风向D/(°) 温度T/℃
状态1 [0, 216) [-22, 16.77)
状态2 [216, 276) [16.77, 22.57)
状态3 [276, 360) [22.57, 36.5)

Fig.6

The CN structure constructed by the GS algorithm with the redefined variable states"

Table 7

The results predicted by CN model under the extreme meteorological conditions"

预测的非精确概率 真实概率
Pim(H1|C1)=[0.82, 0.97] P*(H1|C1)=1.00
Pim(H2|C1)=[0.01, 0.09] P*(H2|C1)=0.00
Pim(H3|C1)=[0.01, 0.10] P*(H3|C1)=0.00
Pim(H1|C2)=[0.18, 0.45] P*(H1|C2)=0.25
Pim(H2|C2)=[0.07, 0.27] P*(H2|C2)=0.25
Pim(H3|C2)=[0.38, 0.72] P*(H3|C2)=0.50
Pim(H1|C3)=[0.42, 0.72] P*(H1|C3)=0.67
Pim(H2|C3)=[0.23, 0.52] P*(H2|C3)=0.33
Pim(H3|C3)=[0.02, 0.11] P*(H3|C3)=0.00
Pim(H1|C4)=[0.41, 0.61] P*(H1|C4)=0.60
Pim(H2|C4)=[0.33, 0.53] P*(H2|C4)=0.40
Pim(H3|C4)=[0.02, 0.10] P*(H3|C4)=0.00

Fig.7

The imprecise probability distributions of WPRE predicted under extreme meteorological conditions"

1 李俊峰,蔡丰波,乔黎明. 2012中国风电发展报告[R].北京:中国环境科学出版社, 2012.
LI Junfeng, CAI Fengbo, QIAO Liming. Report of China wind power outlook in 2012[R]. Beijing: China Environmental Science Press, 2012.
2 娄素华, 杨天蒙, 吴耀武, 等. 含高渗透率风电的电力系统复合储能协调优化运行[J]. 电力系统自动化, 2016, 40 (7): 30- 35.
LOU Suhua , YANG Tianmeng , WU Yaowu , et al. Coordinated optimal operation of hybrid energy storage in power system accommodated high penetration of wind power[J]. Automation of Electric Power Systems, 2016, 40 (7): 30- 35.
3 欧阳庭辉, 查晓明, 秦亮, 等. 基于小波特征提取和筛选的爬坡事件分类[J]. 中国电机工程学报, 2016, 36 (9): 2373- 2380.
OUYANG Tinghui , ZHA Xiaoming , QIN Liang , et al. Classification of wind power ramps based on screened wavelet energy characteristics[J]. Proceedings of the CSEE, 2016, 36 (9): 2373- 2380.
4 QI Yongzhi , LIU Yutian . Wind power ramping control using competitive game[J]. IEEE Transactions on Sustainable Energy, 2016, 7 (4): 1516- 1524.
doi: 10.1109/TSTE.2016.2558584
5 崔明建, 孙元章, 柯德平, 等. 考虑电网侧频率偏差的风电功率爬坡事件预测方法[J]. 电力系统自动化, 2014, 38 (5): 8- 13.
CUI Mingjian , SUN Yuanzhang , KE Deping , et al. Prediction method for wind power ramp events considering frequency deviation of power grid side[J]. Automation of Electric Power Systems, 2014, 38 (5): 8- 13.
6 CUI Mingjian , VENKAT K , BRI-MATHIAS H , et al. A copula-based conditional probabilistic forecast model for wind power ramps[J]. IEEE Transactions on Smart Grid, 2018, 1- 1.
7 张东英, 代悦, 张旭, 等. 风电爬坡事件研究综述及展望[J]. 电网技术, 2018, 42 (6): 1783- 1792.
ZHANG Dongying , DAI Yue , ZHANG Xu , et al. Review and prospect of research on wind power ramp events[J]. Power System Technology, 2018, 42 (6): 1783- 1792.
8 LIU Yongqian, SUN Ying, HAN Shuang. A WT-ARMA based method for wind power ramp events forecasting[C]//5th IET International Conference on Renewable Power Generation. London, UK: IET, 2016: 21-23.
9 NAYAK A K, SHARMA K C, BHAKAR R. ARIMA based statistical approach to predict wind power ramps[C]//2015 IEEE Power and Energy Society General Meeting. Denver, USA: IEEE, 2015: 1-4.
10 CUI M , ZHANG J , FLORITA A R , et al. An optimized swinging door algorithm for identifying wind ramping events[J]. IEEE Transactions on Sustainable Energy, 2016, 7 (1): 150- 162.
doi: 10.1109/TSTE.2015.2477244
11 ZHANG J , FLORITA A , HODGE B M , et al. Ramp forecasting performance from improved short-term wind power forecasting[J]. Energy, 2017, 122, 528- 541.
doi: 10.1016/j.energy.2017.01.104
12 熊一, 查晓明, 秦亮, 等. 风电功率爬坡气象场景分类模型及阈值整定研究[J]. 电工技术学报, 2016, 31 (19): 155- 162.
doi: 10.3969/j.issn.1000-6753.2016.19.016
XIONG Yi , ZHA Xiaoming , QIN Liang , et al. Study on wind power ramping weather scenario classification model and threshold setting[J]. Transactions of China Electrotechnical Society, 2016, 31 (19): 155- 162.
doi: 10.3969/j.issn.1000-6753.2016.19.016
13 GALLGO-CASTILLO C , CUERVA-TEJERO A , LOPEZ-GARCIA O . A review on the recent history of wind power ramp forecasting[J]. Renewable and Sustainable Energy Reviews, 2015, 52, 1148- 1157.
doi: 10.1016/j.rser.2015.07.154
14 KUSIAK A . Prediction of wind farm power ramp rates: a data-mining approach[J]. Journal of Solar Energy Engineering, 2009, 131 (3): 376- 385.
15 崔明建, 孙元章, 柯德平. 基于原子稀疏分解和BP神经网络的风电功率爬坡事件预测[J]. 电力系统自动化, 2014, 26 (12): 6- 11.
doi: 10.7500/AEPS20130418003
CUI Mingjian , SUN Yuanzhang , KE Deping . Wind power ramp events forecasting based on atomic sparse decomposition and BP neural networks[J]. Automation of Electric Power Systems, 2014, 26 (12): 6- 11.
doi: 10.7500/AEPS20130418003
16 ZAREIPOUR H, HUANG D, ROSEHART W. Wind power ramp events classification and forecasting: a data mining approach[C]//2011 IEEE Power and Energy Society General Meeting. Detroit, USA: IEEE, 2011: 1-3.
17 POTTER C W, GRIMIT E, NIJSSEN B.Potential benefits of a dedicated probabilistic rapid ramp event forecast tool[C]//2009 IEEE/PES Power Systems Conference and Exposition. Seattle, USA: IEEE, 2009: 1-3.
18 BOSSAVY A, GIRARD R, KARINIOTAKIS G.Forecasting uncertainty related to ramps of wind power production[C]//European Wind Energy Conference and Exhibition 2010. Warsaw, Poland: European Wind Energy Association, 2010: 2-9.
19 LI Y Q, PETR M, EDWARD L, et al. Temporal uncertainty of wind ramp predictions using probabilistic forecasting technique[C]//2016 IEEE Second International Conference on Big Data Computing Service and Applications (BigDataService). Oxford, UK: IEEE, 2016: 166-173.
20 BILLINTON R , KARKI R , VERMA Ajit Kumar . Reliability and risk evaluation of wind integrated power systems[M]. New Delhi, India: Springer, 2013: 29- 44.
21 BOSSAVY A , GIRARD R , KARINIOTAKIS G . Forecasting ramps of wind power production with numerical weather prediction ensembles[J]. Wind Energy, 2013, 16 (1): 51- 63.
doi: 10.1002/we.526
22 CUI M , ZHANG J , WANG Q , et al. A data-driven methodology for probabilistic wind power ramp forecasting[J]. IEEE Transactions on Smart Grid, 2019, 10 (2): 1326- 1338.
doi: 10.1109/TSG.2017.2763827
23 COZMAN F G . Credal networks[J]. Artificial Intelligence, 2000, 120 (2): 199- 233.
doi: 10.1016/S0004-3702(00)00029-1
24 FRIEDMAN N , GEIGER D , GOLDSZMIDT M . Bayesian network classifiers[J]. Machine Learning, 1997, 29 (2/3): 131- 163.
doi: 10.1023/A:1007465528199
25 BOUCHAALA L , MASMOUDI A , GARGOURI F , et al. Improving algorithms for structure learning in Bayesian networks using a new implicit score[J]. Expert Systems with Applications, 2010, 37 (7): 5470- 5475.
doi: 10.1016/j.eswa.2010.02.065
26 SAMMUT C , WEBB G . Encyclopedia of machine learning[M]. New York, USA: Springer, 2010: 483- 489.
27 CHICKERING D M , HECKERMAN D , MEEK C . Large-sample learning of Bayesian networks is NP-hard[J]. Journal of Machine Learning Research, 2004, 5, 1287- 1330.
28 WALLEY P . Inferences from multinomial data: learning about a bag of marbles[J]. Journal of the Royal Statistical Society, 1996, 58, 3- 57.
29 YANG M , WANG J H , DIAO H R . Interval estimation for conditional failure rates of transmission lines with limited samples[J]. IEEE Transactions on Smart Grid, 2018, 9 (4): 2752- 2763.
doi: 10.1109/TSG.2016.2618623
30 KOTSIANTIS S , KANELLOPOULOS D . Discretization techniques: a recent survey[J]. GESTS International Transactions on Computer Science and Engineering, 2006, 32 (1): 47- 58.
31 HECKENBERGEROVA J, MUSILEK P, JANATA M. Sensitivity analysis of PCA method for wind ramp event detection[C]//IEEE 16th International Conference on Environment and Electrical Engineering (EEEIC). Florence, Italy: IEEE, 2016: 1-3.
32 FERREIRA C , GAMA J , MATIAS L . A survey on wind power ramp forecasting[J]. Energy and Power Engineering, 2010, 5, 368- 372.
[1] JING Ye-fei1, ZHANG Cheng-hui1*, XU Bei-bei, LI Ke1, CHU Xiao-guang1. An output power optimization method based on impedance matching for a small wind generation system [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2013, 43(5): 39-43.
[2] JING Ye-fei1, XU Bei-bei2, ZHANG Cheng-hui1*, LI Ke1, CHU Xiao-guang1. Maximum power point tracking control of wind energy based on pattern search [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2013, 43(5): 44-48.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] SHI Lai-shun,WAN Zhong-yi . Synthesis and performance evaluation of a novel betaine-type asphalt emulsifier[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2008, 38(4): 112 -115 .
[2] KONG Xiang-zhen,LIU Yan-jun,WANG Yong,ZHAO Xiu-hua . Compensation and simulation for the deadband of the pneumatic proportional valve[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2006, 36(1): 99 -102 .
[3] CHEN Rui, LI Hongwei, TIAN Jing. The relationship between the number of magnetic poles and the bearing capacity of radial magnetic bearing[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2018, 48(2): 81 -85 .
[4] LI Ke,LIU Chang-chun,LI Tong-lei . Medical registration approach using improved maximization of mutual information[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2006, 36(2): 107 -110 .
[5] JI Tao,GAO Xu/sup>,SUN Tong-jing,XUE Yong-duan/sup>,XU Bing-yin/sup> . Characteristic analysis of fault generated traveling waves in 10 Kv automatic blocking and continuous power transmission lines[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2006, 36(2): 111 -116 .
[6] LIU Wen-liang, ZHU Wei-hong, CHEN Di, ZHANG Hong-quan. Detection and tracking of moving targets using the morphology match in radar images[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2010, 40(3): 31 -36 .
[7] SUN Guohua, WU Yaohua, LI Wei. The effect of excise tax control strategy on the supply chain system performance[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2009, 39(1): 63 -68 .
[8] SUN Dianzhu, ZHU Changzhi, LI Yanrui. [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2009, 39(1): 84 -86 .
[9] WANG Pei,ZHANG Yanning,SHEN Jiazhen,LIU Juncheng, . Application of information measure and support vector machine in image edge detection[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2006, 36(3): 95 -99 .
[10] LI Fangjia, GAO Shangce, TANG Zheng*, Ishii Masahiro, Yamashita Kazuya. 3D similar pattern generation of snow crystals with cellular automata[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2009, 39(1): 102 -105 .