Journal of Shandong University(Engineering Science) ›› 2019, Vol. 49 ›› Issue (1): 83-90, 113.doi: 10.6040/j.issn.1672-3961.0.2017.366

• Civil Engineering • Previous Articles     Next Articles

Study on modification of lake deposition high liquid limit clay in the Yellow River flood area

Xueyong ZHU1,2(),Haiwei LIU3,Xiaoyan MA4,Qingtao XING2,Xiaoqun LIN5,Tieqiang MAN5   

  1. 1. School of Civil Engineering, Shandong University, Jinan 250061, Shandong, China
    2. Shandong Transportation Institute, Jinan 250104, Shandong, China
    3. Shandong Ping′an Engineering Quality Inspection Co., Ltd, Yantai 265500, Shandong, China
    4. Road Bureau, Shandong Provincial Department of Transport, Jinan 250002, Shandong, China
    5. The Third Engineering Co., Ltd, China Railway Construction Bridge Engineering Bureau Group, Shenyang 110000, Liaoning, China
  • Received:2017-08-03 Online:2019-02-01 Published:2019-03-01

Abstract:

By adding different dosages of lime, fly ash and lime fly ash to the high liquid limit clay in areas formerly flooded by the Yellow River, the liquid-plastic limit test was conducted to investigate the law of material liquid limit and plastic index changing with the number of days, thereby determining the optimal modification dose and effect. The test showed that the main mineral content of high liquid limit soil in areas formerly flooded by the Yellow River was illite, montmorillonite and kaolinite, which had good hydrophily and a liquid limit of about 50%. It had expansibility, easy foaming nature, and poor water stability, with a bearing ratio (CBR) value of less than 3% after 4 d of water immersion; the addition of 4% lime and the 3:9 ratio of lime powder and coal ash in lime-fly ash soil could reduce the hydrophily and expansibility of the material, and improved water stability. The modified soil's CBR reached 8% under the 88% compaction rate after 4 d of water immersion, which met the filling requirements of roadbed area.

Key words: areas formerly flooded by the Yellow River, high liquid limit clay, montmorillonite, expansibility, CBR

CLC Number: 

  • U419

Table 1

Mineral composition of high liquid limit clay"

非黏土矿物质量分数/% 黏土矿物质量分数/%
总量 石英 长石 云母 方解石 白云石 角闪石 总量 蒙脱石 伊利石 高岭石 绿泥石
60 20 20 10 7 3 40 11.2 19.6 4 5.2

Table 2

The characteristics of kaolinite, illite and montmorillonite"

黏土矿物 高岭石 伊利石 蒙脱石
来源 蒙脱石脱硅及原生矿物脱去盐基 白云母、正长石等含钾量高的岩石脱钾 原生矿物脱去盐基;次生矿物脱钾
晶体类型 1:1 2:1 2:1
层间力 氢键力 静电力 范德华力
类质同像 特别发育 广泛发育
层间离子 K+ Na+、Ga2+
电荷来源 晶体侧边断键 Al3+置换Si4+ Fe2+、Fe3+、Mg2+置换Al3+
晶格刚性

Table 3

Particle composition of high liquid limit clay"

%
土样编号 质量分数
>0.075 mm 0.075~0.05 mm 0.05~0.01 mm 0.01~0.005 mm 0.005~0.002 mm < 0.002 mm
1# 6.4 3.7 46.3 14.1 15.2 24.3
2# 5.8 2.1 29.0 15.0 19.4 28.7
3# 2.7 3.7 38.9 12.3 17.2 26.2

Table 4

Liquid & plastic limit of high liquid limit clay"

土样编号 液限/% 塑限/% 塑性指数
1# 45.4 21.9 23.5
2# 58.1 27.1 31.0
3# 47.7 23.4 24.3
红黏土[21] 58.8 30.8 28.0

Table 5

Four days soaking CBR value"

含水率/
%
压实度/
%
吸水率/
%
膨胀率/
%
浸水CBR/
%
17 90 12.4 5.8 0.7
93 10.9 5.6 0.8
96 8.1 4.9 0.8
20 90 11.3 6.1 0.5
93 9.6 5.7 0.6
96 6.4 4.4 0.6
23 90 8.7 5.3 0.4
93 6.3 4.7 0.5

Table 6

The liquid limit of different lime content changes with time"

石灰与风干土质量比/% 素土液限 石灰改性土液限
1 d 2 d 3 d 4 d
2 58.5 52.9 54.4 50.0
3 58.1 56.0 48.8 51.0 46.2
4 55.7 47.8 48.5 45.9

Table 7

Plasticity index of different dosage of lime change with time"

石灰与风干土质量比/% 素土塑性指数 石灰改性土塑性指数
1 d 2 d 3 d 4 d
2 30.1 29.7 27.8 27.4
3 31.0 28.9 28.2 26.7 26.6
4 27.4 27.1 25.7 26.2

Fig.1

The liquid limit change curves with time"

Fig.2

Plasticity index change curves with time"

Table 8

The liquid limit of different fly ash content varies with time"

粉煤灰与风干土的质量比/% 初始液限 粉煤灰改性土液限
2 d 3 d 4 d
10 56.1 55.8 59.1
15 58.1 57.8 56.5 58.9
20 53.7 55.3 57.8
25 57.2 56.9 56.9

Table 9

Plasticity index of soil with different dosage of fly ash varies with time"

粉煤灰与风干土的质量比/% 素土塑性指数 粉煤灰改性土塑性指数
2 d 3 d 4 d
10 32.2 30.6 32.1
15 31.0 32.2 30.2 31.6
20 29.1 29.6 30.3
25 32.8 30.4 30.6

Fig.3

The liquid limit change curves with time"

Fig.4

Plasticity index change curves with time"

Table 10

Lime-fly ash soil liquid limit changes with time"

配比 石灰内掺量/% m(石灰): m(粉煤灰):m(土) 二灰内掺量/% 素土液限/% 二灰改性土液限
1 d 2 d 3 d 4 d 5 d
1 1 1.0:1.5:97.5 2.5 57.2 56.7 55.4 52.3 51.2
2 1 1.0:2.0:97.0 3.0 56.0 57.9 54.6 52.4 51.1
3 1 1.0:3.0:96.0 4.0 55.1 54.8 53.4 53.7 50.8
4 2 2.0:3.0:95.0 5.0 54.8 53.6 52.9 51.1 49.6
5 2 2.0:4.0:94.0 6.0 58.1 53.9 50.7 50.2 48.9 48.7
6 2 2.0:6.0:92.0 8.0 53.3 52.6 51.8 50.9 47.9
7 3 3.0:4.5:92.5 7.5 51.0 50.1 51.2 49.9 48.9
8 3 3.0:6.0:9.0 9.0 43.7 44.9 43.4 44.1 42.9
9 3 3.0:9.0:88.0 12.0 42.9 41.9 41.1 40.3 40.1

Table 11

Lime-fly ash soil plasticity index changes with time"

配比 石灰内掺量/% m(石灰): m(粉煤灰):m(土) 二灰内掺量/% 素土塑性指数 二灰改性土塑性指数
1 d 2 d 3 d 4 d 5 d
1 1 1.0:1.5:97.5 2.5 30.5 30.8 28.8 24.8 24.7
2 1 1.0:2.0:97.0 3.0 30.7 29.6 30.2 30.0 25.7
3 1 1.0:3.0:96.0 4.0 28.2 29.2 30.1 28.7 28.2
4 2 2.0:3.0:95.0 5.0 25.2 25.6 25.7 22.4 21.5
5 2 2.0:4.0:94.0 6.0 31.0 27.4 26.1 23.9 24 24.6
6 2 2.0:6.0:92.0 8.0 27.1 24.4 22.2 21.6 20.4
7 3 3.0:4.5:92.5 7.5 21.2 22.2 21.2 20.2 20.8
8 3 3.0:6.0:9.0 9.0 21.8 21.2 20.2 21.2 20.8
9 3 3.0:9.0:88.0 12.0 20.5 19.9 18.2 18.9 16.7

Fig.5

The liquid limit and plasticity index change curves with time when lime:fly ash was 1:1.5"

Fig.6

The liquid limit and plasticity index change curves with time when lime:fly ash was 1:2"

Fig.7

The liquid limit and plasticity index change curves with time when lime:fly ash was 1:3"

Fig.8

CBR values of lime soil and lime-fly ash soil"

1 欧钊元.山东省裂隙黏土成因及水利工程应用研究[D].青岛:中国海洋大学, 2006.
OU Zhaoyuan. Cause of formation & water conservancy technical application research of crevasse clay in Shan dong Province, China[D]. Qingdao: Ocean University of China, 2006.
2 雷学文, 白世伟, 孟庆山, 等. 动力排水固结法加固饱和软粘土地基试验研究[J]. 施工技术, 2004, 33 (1): 50- 52.
LEI Xuewen , BAI Shiwei , MENG Qingshan , et al. In-situ test study on soft clay improvement by the dynamic consolidation combined with drainage[J]. Construction Technology, 2004, 33 (1): 50- 52.
3 高星林, 任文峰. 高液限粘土路基填筑技术[J]. 压实机械与施工技术, 2005, 10 (12): 52- 60.
GAO Xinglin , REN Wenfeng . Simulation analysis of behavior of stress of high filling culvert[J]. Compaction Machinery & Construction Technology, 2005, 10 (12): 52- 60.
4 刘银生. 高液限粘土适于直接填筑分类指标研究[J]. 中南公路工程, 2004, 1 (1): 59- 60.
doi: 10.3969/j.issn.1674-0610.2004.01.016
LIU Yinsheng . Classification of high liquid limit clay for direct filling[J]. Central South Highway Engineering, 2004, 1 (1): 59- 60.
doi: 10.3969/j.issn.1674-0610.2004.01.016
5 冯啸, 张乐文, 刘人太, 等. 碱土加固注浆材料试验及其工程应用[J]. 山东大学学报(工学版), 2013, 43 (6): 65- 71.
FENG Xiao , ZHANG Lewen , LIU Rentai , et al. Experimental research on grouting material for reinforcement of alkaline earth and its engineering application[J]. Journal of Shandong University(Engineering Science), 2013, 43 (6): 65- 71.
6 张延年, 马建飞. 改性生土坯抗压性能试验研究[J]. 山东大学学报(工学版), 2015, 45 (4): 57- 63.
ZHANG Yannian , MA Jianfei . Compressive performance test research of modified adobe[J]. Journal of Shandong University(Engineering Science), 2015, 45 (4): 57- 63.
7 兰永红, 刘世平, 张俊. 高液限粘土的物理力学性能及在工程中的应用[J]. 公路交通技术, 2001, 21 (3): 16- 18.
LAN Yonghong , LIU Shiping , ZHANG Jun . Physical and mechanical properties of high liquid limit clay and its application in engineering[J]. Technology of Highway and Transport, 2001, 21 (3): 16- 18.
8 王海湘, 于冬升, 张金团, 等. 碎石改良高液限红粘土击实性能试验研究[J]. 湖北文理学院学报, 2016, 37 (5): 21- 25.
doi: 10.3969/j.issn.1009-2854.2016.05.005
WANG Haixiang , YU Dongsheng , ZHANG Jintuan , et al. Experimental study on densification performance of high liquid limit red clay modified with crushed stone[J]. Journal of Hubei University of Arts and Science, 2016, 37 (5): 21- 25.
doi: 10.3969/j.issn.1009-2854.2016.05.005
9 贺珺.黔中红粘土物理性质指标特殊性研究[D].贵州:贵州大学, 2009.
HE Jun. The research on characteristic of physical properties index of red clay at central section in Guizhou Province[D]. Guizhou: Guizhou University, 2009.
10 张亚杰, 洪宝宁, 刘鑫. 高液限土掺灰改良的试验研究[J]. 水利与建筑工程学报, 2014, 12 (1): 6- 10.
ZHANG Yajie , HONG Baoning , LIU Xin . Experimental study on high liquid limit soil improved by lime[J]. Journal of Water Resources and Architectural Engineering, 2014, 12 (1): 6- 10.
11 郭国和. 水泥改良高液限土工程特性试验研究[J]. 交通科技, 2014, 14 (1): 92- 95.
GUO Guohe . Experimental research on engineering performance of cement improved high liquid limit soil[J]. Transportation Science & Technology, 2014, 14 (1): 92- 95.
12 沈康鉴, 喻自祥, 武明, 等. 高液限土改性及施工含水量、施工工艺的研究[J]. 公路, 2008, 31 (2): 148- 153.
SHEN Kangjian , YU Zixiang , WU Ming , et al. Study on high liquid limit soil modification and construction water content and construction technology[J]. Highway, 2008, 31 (2): 148- 153.
13 姚占勇.黄河冲淤积平原土的工程特性研究[D].天津:天津大学, 2006.
YAO Zhanyong.Engineering properties on Yellow River alluvial-plain soil[D]. Tianjin: Tianjin University, 2006.
14 NG S , PLANK J . Interaction mechanisms between Na montmorillonite clay and MPEG-based polycarboxylate superplasticizers[J]. Cement and Concrete Research, 2012, 42 (6): 847- 854.
doi: 10.1016/j.cemconres.2012.03.005
15 ОСИПОВВ, И. 粘土类土和岩石的强度与变形性能的本质[M]. 北京: 地质出版社, 1985.
ООСИПОВ В, И . Properties of stress and strain of clayey siol & rocks[M]. Beijing: Geology Publishing House, 1985.
16 王林.粘土矿物对聚羧酸减水剂性能的影响及机理研究[D].北京:中国矿业大学, 2013.
WANG Lin. Effect of clay minerals on the performance of polycarboxylate superplasticizer and mechanism and mechanism research[D]. Beijing: China University of Mining and Technology, 2013.
17 黄传琴.黄土剖面粘粒矿物的组成特征及其环境意义[D].北京:中国科学院研究生院, 2011.
HUANG Chuanqin. Clay minerals in loess on the loess plateau ande its environmental significance[D]. Beijing: Graduate University of Chinese Academy of Sciences, 2011.
18 徐叶净, 左文哲. 粘土矿物的成因初步研究[J]. 河北联合大学学报(自然科学版), 2013, 35 (1): 69- 72.
XU Yejing , ZUO Wenzhe . The preliminary research on the cause of the clay minerals[J]. Journal of Hebei United University(Natural Science Edition), 2013, 35 (1): 69- 72.
19 周青.蒙脱石层间域微结构及其吸附有机物的分子模拟[D].北京:中国科学院大学, 2015.
ZHOU Qing. Molecular simulations of the montmorillonite interlayer microstructure and the sorption towards organics[D]. Beijing: University of Chinese Academy of Sciences, 2015.
20 交通部公路科学研究院.公路土工试验规程: JTG E40—2007[S].北京:人民交通出版社, 2007.
Research institute of highway ministry of transport.JTG E40-2007 test methods of soils for highway engineering[S]. Beijing: People Communication Press, 2007.
21 李剑峰, 葛和焰. 高塑性粘土填筑高速公路路堤技术研究[J]. 铁道建筑, 2003, 12 (6): 38- 40.
LI Jianfeng , GE Heyan . Study on highway embankment filling with high plasticity clay[J]. Railway Engineering, 2003, 12 (6): 38- 40.
22 李秉宜, 宣剑裕, 郑文斌, 等. 改良高液限黏土水稳定性试验研究[J]. 四川大学学报(工程科学版), 2016, 48 (4): 55- 60.
LI Bingyi , XUAN Jianyu , ZHENG Wenbin , et al. Experimental study on water stability of improved high liquid limit clay[J]. Journal of Sichuan University (Engineering Science Edition), 2016, 48 (4): 55- 60.
23 彭敏.粉煤灰的形貌、组成分析及其应用[D].湘潭:湘潭大学, 2004.
PENG Min. Studies on micro-structure, chemical composition of fly ash and its application[D]. Xiangtan: Xiangtan University, 2004.
24 GONI S , GUERRERO A , LUXAN M P , et al. Activation of the fly ash pozzolanic reaction by hydrothermal conditions[J]. Cement and Concrete Research, 2003, 33 (9): 1399- 1405.
doi: 10.1016/S0008-8846(03)00085-1
[1] LI Fazhan, ZHANG Shuai, ZHANG Jian, LIANG Shuang. Study on C-CBR integrated bioreactor for treatment of rural domestic sewage [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2018, 48(1): 124-130.
[2] DU Hui1,2, YE Wen-hua1, LOU Pei-huang1. Application research on CBR technology used in modular variant design [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2011, 41(1): 78-85.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] QIN Tong, SUN Fengrong*, WANG Limei, WANG Qinghao, LI Xincai. 3D surface reconstruction using the shape based interpolation guided by maximal discs[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2010, 40(3): 1 -5 .
[2] WANG Yong, XIE Yudong. Gas control technology of largeflow pipe[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2009, 39(2): 70 -74 .
[3] XIA Bin,ZHANG Lian-jun . Energy comparison-based TOA estimation algorithm for the DS-CDMA UWB system[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2007, 37(1): 70 -73 .
[4] BO De-Yun, ZHANG Dao-Jiang. Adaptive spectral clustering algorithm[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2009, 39(5): 22 -26 .
[5] LI Shan-ping,ZHAO Yu-xiao,QIAO Peng,FENG Zheng-zhi . Cultivation of aerobic granular sludge and the kinetics of substrate degradation and biomass growth[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2008, 38(3): 95 -98 .
[6] ZHAO Ke-Jun, WANG Xin-Jun, LIU Xiang, CHOU Yi-Hong. Algorithms of continuous top-k join query over structured overlay networks[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2009, 39(5): 32 -37 .
[7] LI Xin-Ping, DAI Yi-Fei, HU Jing. Fluid-solid coupling analysis of surrounding rock mass stability and water inflow forecast of a tunnel in a karst zone[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2009, 39(4): 1 -6 .
[8] DING Wan-Tao, LI Shu-Cai, ZHANG Qing-Song. Discussion on interface error regularity of inclined  stratum predicted by TSP[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2009, 39(4): 57 -60 .
[9] WANG Bai-wei,CAO Sheng-le . A mult-objective assessment method of the effects of industrial waste-water management[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2007, 37(3): 89 -92 .
[10] GAO Yang, ZHANG Qing-Song, YUAN Xiao-Shuai, XU Zhen-Hao, LIU Bin. Application of geological radar to geological forecast in karst tunnel[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2009, 39(4): 82 -86 .