山东大学学报(工学版) ›› 2012, Vol. 42 ›› Issue (4): 60-66.
孙靖杰1,赵建军2*,姚跃亭3,姚刚1
SUN Jing-jie1, ZHAO Jian-jun2*, YAO Yue-ting3, YAO Gang1
摘要:
针对现有监测方法对时变过程易产生误警且对微弱故障的检测能力不足等问题,提出一种基于可变遗忘因子的改进递归主元分析(recursive principal component analysis,RPCA)方法用于自适应故障监测。在主元模型的在线更新中引入一种可变遗忘因子,并为不同的模型参数设置不同的遗忘因子;在相关矩阵的递归分解中引入部分奇异值分解的思想,递归计算负荷矩阵和特征值对角矩阵;提出一种控制限递归更新方法,实现控制限的自适应更新。对某型雷达发射机工作过程的监测结果表明,改进的RPCA方法能自适应地跟踪过程的时变,有效地减少了对正常工况调整的误警和对微弱故障的漏报。
No related articles found! |
|