您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(工学版)》

山东大学学报(工学版) ›› 2015, Vol. 45 ›› Issue (5): 29-35.doi: 10.6040/j.issn.1672-3961.3.2014.033

• 机器学习与数据挖掘 • 上一篇    下一篇

基于多通道Gabor滤波模糊融合的遥感图像舰船检测

肖乔, 裴继红, 王荔霞, 龚志成   

  1. 深圳大学信息工程学院, 广东 深圳 518060
  • 收稿日期:2014-10-08 修回日期:2015-06-02 出版日期:2018-10-20 发布日期:2014-10-08
  • 通讯作者: 裴继红(1966-),男,甘肃武威人,教授,博导,主要研究方向为遥感图像分析,视频内容分析,THz-TDS信号与图像分析等.E-mail:jhpei@szu.edu.cn E-mail:jhpei@szu.edu.cn
  • 作者简介:肖乔(1993-),男,广东湛江人,硕士研究生,主要研究方向为遥感图像处理.E-mail:502779655@qq.com
  • 基金资助:
    国防预研资助项目(9140C800501120C80283);国家自然科学基金重点资助项目(61331021);深圳市科技计划资助项目(JCYJ20130408173025036,JCYJ20130326112132687);深圳市南山区重点实验室资助项目(KC2013ZDZJ0010A)

Ship detection in remote sensing image based on the fuzzy fusion of multi-channel Gabor filtering

XIAO Qiao, PEI Jihong, WANG Lixia, GONG Zhicheng   

  1. College of Information Engineering, Shenzhen University, Shenzhen 518060, Guangdong, China
  • Received:2014-10-08 Revised:2015-06-02 Online:2018-10-20 Published:2014-10-08

摘要: 针对海水背景对舰船目标检测的干扰问题,提出了1种基于多通道Gabor滤波模糊综合评价融合方法来抑制海水背景,增强舰船目标区域,并实现舰船目标的检测和提取。首先对图像进行多通道Gabor滤波,得到多幅滤波增强输出图像;其次,定义了3种滤波图像增强效果评价指标,并为输出图像建立模糊评价矩阵;再次,根据模糊评价矩阵计算出各输出图像的模糊综合评价值,并选出各通道滤波增强效果最优的输出图像,作为该通道的滤波输出显著图像;最后,通过各显著图像的模糊评价值,计算对应的融合权重,并对这些输出显著图像进行加权叠加融合,得到舰船目标融合增强图像并进行检测。实验结果表明,本研究提出的方法能够自适应选取具有较好背景抑制效果和舰船目标区域增强效果的Gabor滤波输出图像进行融合,融合后的图像能够有效增强舰船目标的显著性。与现有的基于多通道Gabor滤波的舰船目标检测方法相比较,本研究提出的舰船目标检测算法能够有效减少目标检测的虚警率,提高检测的正确率。

关键词: 遥感图像, 舰船检测, 评价指标, 融合, 模糊综合评价, 图像增强, Gabor滤波器

Abstract: A scheme to sea background suppressing was proposed for ships detection in optical remote sensing images based on the fuzzy fusion of multi-channel Gabor filtering. First, a multi-channel Gabor filter was designed to give output image group. Second, three filtering enhancement evaluations were defined to get the fuzzy evaluation matrix. Third, the fuzzy comprehensive evaluations were calculated and the significant images were selected from filtered output images. Finally, the weights of the significant images were determined and the fused image was given by using weighted sum of these significant images. Experimental results showed that the proposed ship detection algorithm based on fuzzy fusion of multi-channel Gabor filtering could efficiently improve the detection accuracy and significantly reduce false alarm rate.

Key words: remote sensing images, ship detection, evaluation index, fusion, fuzzy comprehensive evaluation, image enhancement, Gabor filters

中图分类号: 

  • TP751.1
[1] SHI Zhenwei, YU Xinran, JIANG Zhiguo, et al. Ship detection in high-resolution optical imagery based on anomaly detector and local shape feature[J]. IEEE Transaction on Geoscience and Remote Sensing, 2014, 52(8):4511-4523.
[2] HUANG Gaopan, WANG Yangqing, ZHANG Yushuang, et al. Ship detection using texture statistics from optical satellite images[C]//2011 International Conference on Digital Image Computing Techniques and Applications. Queensland, Australia: IEEE, 2011:507-512.
[3] 王彦情, 马雷, 田原. 光学遥感图像舰船目标检测与识别综述[J]. 自动化学报, 2011, 37(9):1029-1039. WANG Yanqing, MA Lei, TIAN Yuan. State-of-art of ship detection and recognition in optical remotely sensed imagery[J]. Acta Automatica Sinaca, 2011, 37(9):1029-1039.
[4] 毕福昆, 高立宁, 龙腾, 等. 结合视觉显著性引导与分类器融合的遥感目标检测[J]. 红外与激光工程, 2011, 40(10):2059-2064. BI Fukun, GAO Lining, LONG Teng, et al. Remote sensing target detection based on visual saliency guidance and classifier fusion[J]. Infrared and Laser Engineering, 2011, 40(10):2059-2064.
[5] 唐沐恩, 林挺强, 文贡坚. 遥感图像中舰船检测方法综述[J]. 计算机应用研究, 2011, 28(1):29-36. TANG Muen, LIN Tingqiang, WEN Gongjian. Overview of ship detection methods in remote sensing image[J]. Application Research of Computers, 2011, 28(1):29-36.
[6] 丁正虎, 余映, 王斌, 等. 选择性视觉注意机制下的多光谱图像舰船检测[J]. 计算机辅助设计与图形学学报, 2011, 23(3):419-425. DING Zhenghu, YU Ying, WANG Bin, et al. Visual attention-based ship detection in multispectral imagery[J]. Journal of Computer-Aided Design & Computer Graphics, 2011, 23(3):419-425.
[7] 高立宁, 毕福昆, 龙腾, 等. 一种光学遥感图像海面舰船检测算法[J]. 清华大学学报:自然科学版, 2011, 51(1):105-110. GAO Lining, BI Fukun, LONG Teng, et al. Ship detection algorithm for optical remote sensing images[J]. Journal of Tsinghua University: Science & Tecnology, 2011, 51(1):105-110.
[8] 肖利平, 曹炬, 高晓颖, 等. 复杂海地背景下的舰船目标检测[J]. 光电工程, 2007, 34(6):6-10. XIAO Liping, CAO Ju, GAO Xiaoying, et al. Detection for ship targets in complicated background of sea and land[J]. Opto-Electronic Engineering, 2007, 34(6):6-10.
[9] 周晖, 郭军, 朱长仁, 等. 引入PLSA模型的光学遥感图像舰船检测[J]. 遥感学报, 2010, 14(4):663-680. ZHOU Hui, GUO Jun, ZHU Changren, et al. Ship detection from optical remote sensing images based on PLSA model[J]. Journal of Remote Sensing, 2010, 14(4):663-680.
[10] 王保云, 张荣, 袁圆, 等. 可见光遥感图像中舰船目标检测的多阶阈值分割方法[J]. 中国科技技术大学学报, 2011, 41(4):293-298. WANG Baoyun, ZHANG Rong, YUAN Yuan, et al. A new multi-level threshold segmentation method for ship targets detection in optical remote sensing images[J]. Journal of University of Science and Technology of China, 2011, 41(4):293-298.
[11] 周伟, 关键, 何友, 等. 光学遥感图像低可观测区域舰船检测[J]. 中国图象图形学报, 2012, 17(9):1182-1187. ZHOU Wei, GUAN Jian, HE You, et al. Ship detection from low observable regions in optical remote sensing imagery[J]. Journal of Image ad Graphics, 2012, 17(9):1182-1187.
[12] TAN Min, GU Juanjuan, HU Xueyou, et al. 2-D DHT-based fast Gabor transform for image processing[C]//2010 Second IITA International Conference on Geoscience and Remote Sensing. Qingdao, China: IEEE, 2010:372-375.
[13] RAD G R, SAMIEE K. Fast and modified image segmentation method based on active contours and Gabor filter[C]//2008 3rd International Conference on Information and Communication Technologies. Damascus, Syria: IEEE, 2008:1-5.
[14] 赵海英, 冯月萍. 应用Gabor滤波器和局部边缘概率直方图的全局纹理方向性度量[J]. 光学精密工程, 2010, 18(7):1668-1674. ZHAO Haiying, FENG Yueping. Metric of global texture direction with histogram of local edge probability and Gabor filter[J]. Optics and Precision Engineering, 2010, 18(7):1668-1674.
[15] RAHMANI N, BEHRAD A. Automatic marine targets detection using features based on local Gabor binary pattern histogram sequence[C]//2011 1st International Conference on Computer and Knowledge Engineering. Mashhad, Iran:IEEE, 2011:195-201.
[16] 蔡念, 张国宏, 楼朋旭, 等. 基于形状和纹理的外观设计专利图像检索方法[J]. 山东大学学报:工学版, 2011, 41(2):1-4. CAI Nian, ZHANG Guohong, LOU Pengxu, et al. Image retrieval for a design patent based on shape features and texture features[J]. Journal of Shandong University:Engineering Science, 2011, 41(2):1-4.
[17] 谷多玉, 郭江, 李书晓, 等. 基于Gabor滤波器的航空图像居民区域提取[J]. 北京航空航天大学学报, 2012, 38(1):106-122. GU Duoyu, GUO Jiang, LI Shuxiao, et al. Resident region extraction using Gabor filter in aerial imagery[J]. Journal of Beijing University of Aeronautics and Astronautics, 2012, 38(1):106-122.
[18] RAJADELL O, GARCIA-SEVILLA P, PLA F. Spectral-spatial pixel characterization using Gabor filters for hyperspectral image classification[J]. IEEE Geoscience and Remote Sensing Letters, 2013, 10(4):860-864.
[19] LI Wei, DU Qian. Gabor-filtering-based nearest regularized subspace for hyperspetral image classification[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2014, 7(4):1012-1022.
[20] 杨泳波, 姜柏军. 利用Gabor小波系数融合进行图像增强的研究[J]. 激光与红外, 2010, 40(10):1121-1124. YANG Yongbo, JIANG Bojun. Research about image enhancement using the integration of Gabor wavele coefficient[J]. Laser & Infrared, 2010, 40(10):1121-1124.
[21] 施鹏, 庄连生, 敖欢欢, 等. 基于视觉感知机理的舰船目标检测[J]. 大气与环境光学学报, 2010, 5(5):373-379. SHI Peng, ZHUANG Liansheng, AO Huanhuan, et al. Ship detection based on human vision perception[J]. Journal of Atmospheric and Environmental Optics, 2010, 5(5):373-379.
[22] 王卫卫, 席灯炎, 杨塨鹏, 等. 利用结构纹理分解的海洋舰船目标检测[J]. 西安电子科技大学学报:自然科学版, 2012, 39(4):131-137. WANG Weiwei, XI Dengyan, YANG Gongpeng, et al. Warship target detection algorithm based on cartoon-texture decomposition[J]. Journal of Xidian University:Natural Science, 2012, 39(4):131-137.
[23] 雷琳, 王壮, 粟毅. 基于多尺度Gabor滤波器组的不变特征点提取新方法[J]. 电子学报, 2009, 37(10):2314-2319. LEI Lin, WANG Zhuang, SU Yi. A new invariant feature detector based on multi-scale Gabor filter bank[J]. Acta Electronica Sinica, 2009, 37(10):2314-2319.
[24] 范春年, 张福炎. Gabor相位特征的人脸光照不变量提取[J]. 中国图象图形学报, 2012, 17(5):676-681. FAN Chunnian, ZHANG Fuyan. Illumination invariant extraction on Gabor phase[J]. Journal of Image and Graphics, 2012, 17(5):676-681.
[25] 孔锐, 张冰. Gabor滤波器参数设置[J]. 控制与决策, 2012, 27(8):1276-1280. KONG Rui, ZHANG Bing. Design of Gabor filters' parameter[J]. Control and Decision, 2012, 27(8):1276-1280.
[26] 李柏年. 模糊数学及其应用[M]. 合肥:合肥工业大学出版社,2007:77-92.
[1] 陈海永,余力,刘辉,杨佳博,胡启迪. 基于经验小波的太阳能电池缺陷图像融合[J]. 山东大学学报(工学版), 2018, 48(5): 24-31.
[2] 张璞,刘畅,王永. 基于特征融合和集成学习的建议语句分类模型[J]. 山东大学学报(工学版), 2018, 48(5): 47-54.
[3] 张宪红,张春蕊. 基于六维前馈神经网络模型的图像增强算法[J]. 山东大学学报(工学版), 2018, 48(4): 10-19.
[4] 唐乐爽,田国会,黄彬. 一种基于DSmT推理的物品融合识别算法[J]. 山东大学学报(工学版), 2018, 48(1): 50-56.
[5] 周志杰,赵福均,胡昌华,王力,冯志超,刘涛源. 基于证据推理的航天继电器故障预测方法[J]. 山东大学学报(工学版), 2017, 47(5): 22-29.
[6] 叶晓丰, 王培良, 杨泽宇. 基于混合MPLS的多阶段过程质量预报方法[J]. 山东大学学报(工学版), 2017, 47(5): 246-253.
[7] 牟春倩,唐雁. 融合整体和局部信息的三维模型检索方法[J]. 山东大学学报(工学版), 2016, 46(6): 48-53.
[8] 曹升乐,于翠松. 水资源相对“资产负债表”研究[J]. 山东大学学报(工学版), 2016, 46(6): 1-7.
[9] 王斌,常发亮,刘春生. 基于多特征融合的交通标志分类[J]. 山东大学学报(工学版), 2016, 46(4): 34-40.
[10] 刘帆,陈泽华,柴晶. 一种基于深度神经网络模型的多聚焦图像融合方法[J]. 山东大学学报(工学版), 2016, 46(3): 7-13.
[11] 李发权, 杨立才, 颜红博. 基于PCA-SVM多生理信息融合的情绪识别方法[J]. 山东大学学报(工学版), 2014, 44(6): 70-76.
[12] 沈晓晶, 陈明, 池涛. 多Agent水质监控系统中的信息融合算法[J]. 山东大学学报(工学版), 2014, 44(4): 39-45.
[13] 汤积华, 任雪芳, 张龙. 外逆P-信息智能融合与属性析取收缩关系[J]. 山东大学学报(工学版), 2014, 44(4): 46-51.
[14] 孔超1,2,张化祥1,2*,刘丽1,2. 基于兴趣区域特征融合的半监督图像检索算法[J]. 山东大学学报(工学版), 2014, 44(3): 22-28.
[15] 杨秀林1,黄硕2*,邓苗1,张基宏1,3. 基于显著计算与自适应PCNN的图像融合方法[J]. 山东大学学报(工学版), 2014, 44(2): 35-42.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 何东之, 张吉沣, 赵鹏飞. 不确定性传播算法的MapReduce并行化实现[J]. 山东大学学报(工学版), 2015, 45(5): 22 -28 .
[2] 熊冰妍, 王国胤, 邓维斌. 分级式代价敏感决策树及其在手机换机预测中的应用[J]. 山东大学学报(工学版), 2015, 45(5): 36 -42 .
[3] 李新玉, 徐桂云, 任世锦, 杨茂云. 基于鉴别流形的不相关稀疏投影非负矩阵分解[J]. 山东大学学报(工学版), 2015, 45(5): 1 -12 .
[4] 王晓初, 王士同, 包芳. 基于概率密度分布一致约束的最小最大概率机图像分类算法[J]. 山东大学学报(工学版), 2015, 45(5): 13 -21 .