山东大学学报 (工学版) ›› 2025, Vol. 55 ›› Issue (3): 72-79.doi: 10.6040/j.issn.1672-3961.0.2024.092
• 交通运输工程——智慧交通专题 • 上一篇
董明书1,陈俐企1,马川义2,张珠皓1,孙仁娟1,管延华1,庄培芝1*
DONG Mingshu1, CHEN Liqi1, MA Chuanyi2, ZHANG Zhuhao1, SUN Renjuan1, GUAN Yanhua1, ZHUANG Peizhi1*
摘要: 采用探地雷达对典型路段的路面裂缝识别并定位。通过钻芯取样与铣刨观察结合的方法验证,构建了包含728张雷达图像的数据库;采用YOLO v8l算法学习裂缝特征,通过在YOLO v8l算法的基础上引入注意力机制和修改激活函数,克服了路面裂缝图像特征多变、噪声杂波明显等对于智能判识造成的干扰,同时消除了模型的过拟合现象;对算法修正后,模型的计算参数增多,计算效率提升,修正算法的识别精确度和召回率分别达到99.4%和92.3%。训练过程中平均精度均值与损失函数的震荡幅度较小,表示该数据集标注原则统一,证明了采用该方法识别路面裂缝的有效性与可靠性。
中图分类号:
| [1] 黄哲骁, 陶毅荣. 基于三维探地雷达的襄荆高速路面病害现状分析[J]. 交通节能与环保, 2024, 20(2): 151-156. HUANG Zhexiao, TAO Yirong. Analysis of pavement disease status of Xiangjing expressway based on three-dimensional ground-penetrating radar[J]. Transport Energy Conservation & Environmental Protection, 2024, 20(2): 151-156. [2] 周陈婴. 隧道衬砌检测探地雷达图像分析与工程应用[J]. 山东大学学报(工学版), 2018, 48(4): 61-68. ZHOU Chenying. Image analysis and engineering application of ground penetrating radar in tunnel lining detection[J]. Journal of Shandong University(Engi-neering Science), 2018, 48(4): 61-68. [3] 周轮, 李术才, 许振浩, 等. 隧道综合超前地质预报技术及其工程应用[J]. 山东大学学报(工学版), 2017, 47(2): 55-62. ZHOU Lun, LI Shucai, XU Zhenhao, et al. Integrated advanced geological prediction technology of tunnel and its engineering application[J]. Journal of Shandong University(Engineering Science), 2017, 47(2): 55-62. [4] 高阳, 张庆松, 原小帅, 等. 地质雷达在岩溶隧道超前预报中的应用[J]. 山东大学学报(工学版), 2009, 39(4): 82-86. GAO Yang, ZHANG Qingsong, YUAN Xiaoshuai, et al. Application of geological radar to geological forecast in Karst tunnel[J]. Journal of Shandong University(Engineering Science), 2009, 39(4): 82-86. [5] 罗诗光, 任强, 王成浩, 等. 基于深度学习的GPR时频域联合电磁反演方法[J]. 电波科学学报, 2022, 37(4): 555-567. LUO Shiguang, REN Qiang, WANG Chenghao, et al. GPR time-frequency domain joint electromagnetic inversion method based on deep learning[J]. Chinese Journal of Radio Science, 2022, 37(4): 555-567. [6] 赵勇. 基于CNN的探地雷达数据反演与道路病害自动识别[D]. 长春: 吉林大学, 2022. ZHAO Yong. Research on inversion of ground penetrating radar data and automatic detection of road diseases based on CNN [D]. Changchun: Jilin University, 2022. [7] 郑金杏. 探地雷达层状介质参数反演算法研究[D]. 桂林:桂林电子科技大学, 2023. ZHENG Jinxing. Research on the inversion algorithm for layered medium parameters in ground penetrating radar[D]. Guilin: Guilin University of Electronic Techno-logy, 2023. [8] CARION N, MASSA F, SYNNAEVE G, et al. End-to-end object detection with transformers[C] // European Conference on Computer Vision. Cham, Switzerland: Springer International Publishing, 2020: 213-229. [9] QIN Z Y, LU X K, NIE X S, et al. Exposing the self-supervised space-time correspondence learning via graph kernels[C] // Proceedings of the AAAI Conference on Artificial Intelligence. Washington, D.C., USA: AAAI Press, 2023: 2110-2118. [10] ZHANG X M, ZHAO P, JI J S, et al. Video corpus moment retrievalvia deformable multigranularity feature fusion and adversarial training[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2024, 34(8): 6686-6698. [11] DINH K, GUCUNSKI N, DUONG T H. An algorithm for automatic localization and detection of rebars from GPR data of concrete bridge decks[J]. Automation in Construction, 2018, 89: 292-298. [12] OZKAYA U, MELGANI F, BELETE BEJIGA M, et al. GPR B-scan image analysis with deep learning methods[J]. Measurement, 2020, 165: 107770. [13] ME?瘙塁ECAN(·overI), BETIM Ç,(·overI)HSAN Ö B. Feature vector for underground object detection using B-scan images from GprMax[J]. Microprocessors and Microsystems, 2020, 76: 103116. [14] 薛丽君. 基于探地雷达B-scan图像双曲线特征的目标检测与定位研究[D]. 哈尔滨: 哈尔滨工业大学, 2021. XUE Lijun. Research on target detection and location based on hyperbolic-shaped signatures in GPR B-Scan image [D]. Harbin: Harbin Institute of Techno-logy, 2021. [15] 童峥. 基于深度学习和探地雷达技术的路面结构病害检测研究[D]. 西安: 长安大学, 2018. TONG Zheng. Research on pavement distress inspection based on deep learning and ground penetrating radar [D]. Xi'an: Changan University, 2018. [16] 胡浩帮, 方宏远, 王复明, 等. 基于Faster R-CNN算法的探地雷达管线目标智能识别[J]. 城市勘测, 2020(3): 203-208. HU Haobang, FANG Hongyuan, WANG Fuming, et al. Intelligent recognition of pipeline target based on Faster R-CNN algorithm for ground penetrating radar[J]. Urban Geotechnical Investigation & Surveying, 2020(3): 203-208. [17] REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection[C] //2016 IEEE Conference on Computer Vision and Pattern Recognition(CVPR). Las Vegas, USA: IEEE, 2016: 779-788. [18] 覃紫馨, 姜彦南, 徐立, 等. 基于YOLO算法的探地雷达道路图像异常自动检测[J]. 科学技术与工程, 2023, 23(27): 11505-11512. QIN Zixin, JIANG Yannan, XU Li, et al. Automatic detection of anomalies in GPR images based on YOLO algorithm[J]. Science Technology and Engineering, 2023, 23(27): 11505-11512. [19] 杨洋, 赵广茂, 张志厚, 等. 铁路路基病害探地雷达智能识别方法[J]. 地球物理学进展, 2024, 39(6): 2471-2482. YANG Yang, ZHAO Guangmao, ZHANG Zhihou, et al. Intelligent detection method for railway subgrade diseases based on ground-penetrating radar[J]. Progress in Geophysics, 2024, 39(6): 2471-2482. [20] 赵镇, 黄勇, 冯昆. 三维探地雷达在道路检测中的研究与应用[J]. 测绘通报, 2024(2): 148-152. ZHAO Zhen, HUANG Yong, FENG Kun. Research and application of 3D ground penetrating in road detection[J]. Bulletin of Surveying and Mapping, 2024(2): 148-152. [21] 范剑伟. 基于无损检测技术的沥青路面裂缝及结构状态检测评价方法研究[D]. 南京: 东南大学, 2022. FAN Jianwei. Research on detection and evaluation method of asphalt pavement cracks and structural state based on nondestructive testing technology[D]. Nanjing: Southeast University, 2022. [22] BARKATAKI N, TIRU B, SARMA U. A CNN model for predicting size of buried objects from GPR B-Scans[J]. Journal of Applied Geophysics, 2022, 200: 104620. [23] 周黎明, 张杨, 付代光, 等. 道路地下空洞探地雷达波场和时频特性[J]. 同济大学学报(自然科学版), 2024, 52(1): 77-85. ZHOU Liming, ZHANG Yang, FU Daiguang, et al. Wave field and time-frequency characteristics of ground penetrating radar for underground cavity of road[J]. Journal of Tongji University(Natural Science), 2024, 52(1): 77-85. [24] LU H P, PLATANIOTIS K N, VENETSANOPOULOS A N. MPCA: multilinear principal component analysis of tensor objects[J]. IEEE Transactions on Neural Net-works, 2008, 19(1): 18-39. [25] ZHU L, WANG X J, KE Z H, et al. BiFormer: vision transformer with bi-level routing attention[C] //2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR). Vancouver, Canada: IEEE, 2023: 10323-10333. [26] 常致富, 周风余, 王玉刚, 等. 基于深度学习的图像自动标注方法综述[J]. 山东大学学报(工学版), 2019, 49(6): 25-35. CHANG Zhifu, ZHOU Fengyu, WANG Yugang, et al. A survey of image captioning methods based on deep learning[J]. Journal of Shandong University(Engi-neering Science), 2019, 49(6): 25-35. [27] KLAMBAUER G, UNTERTHINER T, MAYR A, et al. Self-normalizing neural networks[C] // Proceedings of the 31st International Conference on Neural Information Processing Systems. Long Beach, USA: [s.n.] , 2017: 971-980. |
| [1] | 聂秀山,赵润虎,宁阳,刘新锋. 开放词汇目标检测方法综述[J]. 山东大学学报 (工学版), 2025, 55(1): 1-14. |
| [2] | 李伟豪,王苹苹,许万博,魏本征. 结构先验引导的多模态腰椎MRI图像分割算法[J]. 山东大学学报 (工学版), 2025, 55(1): 66-76. |
| [3] | 张曼,孙凯军,李翔,孙纪舟. 融合FasterNet和RepVGG的安全设备佩戴检测方法[J]. 山东大学学报 (工学版), 2024, 54(6): 19-28. |
| [4] | 常新功,苏敏惠,周志刚. 基于进化集成的图神经网络解释方法[J]. 山东大学学报 (工学版), 2024, 54(4): 1-12. |
| [5] | 马翔悦,徐金东,倪梦莹. 基于多尺度特征模糊卷积神经网络的遥感图像分割[J]. 山东大学学报 (工学版), 2024, 54(3): 44-54. |
| [6] | 索大翔,李波. 基于Gromov-Wasserstein最优传输的输电线路小目标检测方法[J]. 山东大学学报 (工学版), 2024, 54(3): 22-29. |
| [7] | 陈晓燕,王川,齐明杰,张宁,林晓龙,霍延强,刘世杰,田源. 采用雷视融合方法的灌溉风险区异物入侵风险预警[J]. 山东大学学报 (工学版), 2024, 54(3): 115-121. |
| [8] | 迟云浩,杨璐,郭杰,郝凡昌,聂秀山. 基于注意力特征融合网络的手指静脉图像质量评价方法[J]. 山东大学学报 (工学版), 2023, 53(6): 56-62. |
| [9] | 那绪博,张莹,李沐阳,陈元畅,华云鹏. 基于ODCG的网约车需求预测模型[J]. 山东大学学报 (工学版), 2023, 53(5): 48-56. |
| [10] | 于畅,伍星,邓秋菊. 基于深度学习的多视角螺钉缺失智能检测算法[J]. 山东大学学报 (工学版), 2023, 53(4): 104-112. |
| [11] | 范海雯,郝旭东,赵康,邢法财,蒋哲,李常刚. 基于卷积神经网络的含分布式光伏配电网静态等值[J]. 山东大学学报 (工学版), 2023, 53(4): 140-148. |
| [12] | 余明骏,刁红军,凌兴宏. 基于轨迹掩膜的在线多目标跟踪方法[J]. 山东大学学报 (工学版), 2023, 53(2): 61-69. |
| [13] | 刘丁菠,刘学艳,于东然,杨博,李伟. 面向小样本目标检测任务的自适应特征重构算法[J]. 山东大学学报 (工学版), 2022, 52(6): 115-122. |
| [14] | 王智伟,徐海超,郭相阳,马炯,褚云龙,陈前昌,卢治. 基于卷积神经网络和层次分析的新能源电源调频能力智能预测方法[J]. 山东大学学报 (工学版), 2022, 52(5): 70-76. |
| [15] | 孟令灿,聂秀山,张雪. 基于遮挡目标去除的公交车拥挤度分类算法[J]. 山东大学学报 (工学版), 2022, 52(4): 83-88. |
|
||