您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(工学版)》

山东大学学报 (工学版) ›› 2021, Vol. 51 ›› Issue (6): 1-8.doi: 10.6040/j.issn.1672-3961.0.2020.429

• 机械工程——海洋工程与技术专题 •    

液压蓄能式波浪能发电装置关键参数分析

刘颖昕1(),秦健1,刘延俊1,2,*()   

  1. 1. 山东大学海洋研究院, 山东 青岛 266237
    2. 高效洁净机械制造教育部重点实验室, 山东 济南 250061
  • 收稿日期:2020-10-23 出版日期:2021-12-20 发布日期:2022-01-19
  • 通讯作者: 刘延俊 E-mail:liuyingxin0628@163.com;lyj111ky@163.com
  • 作者简介:刘颖昕(1996—),女,山东济南人,硕士研究生,主要研究方向为海洋可再生能源装备研发. E-mail: liuyingxin0628@163.com
  • 基金资助:
    山东省重大科技创新工程资助项目(2018CXGC0104);国家自然科学基金资助项目(U1706230);国家电网公司总部资助科技项目(5400-201916148A-0-0-00);国家重点研发计划资助项目(2016YFE0205700)

The analysis of key parameters of hydraulic energy storage system of wave energy converter

Yingxin LIU1(),Jian QIN1,Yanjun LIU1,2,*()   

  1. 1. Institute of Marine Science and Technology, Shandong University, Qingdao 266237, Shandong, China
    2. Key laboratory of High Efficiency and Clean Mechanical Manufacture of Ministry of Education, Jinan 250061, Shandong, China
  • Received:2020-10-23 Online:2021-12-20 Published:2022-01-19
  • Contact: Yanjun LIU E-mail:liuyingxin0628@163.com;lyj111ky@163.com

摘要:

针对波浪能发电效率低的问题, 建立由波浪输入至马达输出的系统数学模型, 采用理论建模和仿真分析相结合的方式确定影响系统发电功率的关键参数, 为提高装置发电效率的液压能量转换系统恒转速控制策略的研究提供理论指导。波浪能发电的液压蓄能式波浪能发电系统主要由3部分组成, 建立系统各元件的运动方程及能量方程, 寻找元件间的连接参数建立系统数学模型, 通过理论分析系统功率方程定性地确定系统工作特性及关键参数。为验证理论分析结果的准确性, 借助AMEsim仿真平台完成系统设计及仿真验证。结果表明, 马达输出功率主要受波浪波高、周期、比例流量阀流通面积及马达排量的影响, 最高影响阶次分别为1次方、4次方、4次方和2次方。仿真验证还证明蓄能器预充气压力几乎不会对马达输出功率产生影响。

关键词: 波浪能发电, 液压蓄能式, 分析模型, 仿真平台, 元件工作参数

Abstract:

To improve the efficiency of wave power generation technology, a mathematical model of the system from wave input to motor output was established. The key parameters that affected the system′s power generation capacity were analyzed by using theoretical modeling and simulating, so as to provide theoretical guidance for the research of the constant speed control strategy of the hydraulic energy conversion system. The hydraulic energy storage system of wave energy generation was composed of 3 parts. The mathematical model of the system was established by analyzing each component′s motion equation and energy equation, and finding the connection parameters between the two components. The key parameters and characteristics of the system were determined qualitatively by analyzing the system′s power equation. To confirm the accuracy of theoretical analysis, the AMEsim simulation platform was used to design and imitate the system. The results showed that the motor′s output power was affected by the height of the wave, period, flow area of the proportional flow valve and the motor displacement. The highest order of the influence was 1, 4, 4 and 2, respectively. The results also verified that the precharging pressure of the accumulator had little influence on the motor′s output power.

Key words: wave energy conversion, hydraulic energy storage, analytical model, simulation platform, operating parameter of component

中图分类号: 

  • P74

图1

波浪能发电装置结构简图"

图2

置于波浪中的浮子示意图"

图3

浮子-活塞受力分析"

表1

浮子的关键参数"

外径D1/m 内径D2/m 总高L/m 吃水深度d/m 质量mt/kg
3.21 1.61 1.00 0.50 3 115.12

图4

波浪能发电系统仿真模型"

图5

系统压力时间变化曲线"

图6

功率随时间变化曲线"

图7

波浪波高-功率曲线"

图8

蓄能器预充气压力-功率曲线"

图9

波浪周期-功率曲线"

图10

马达排量-功率曲线"

图11

流量阀通流面积-功率曲线"

1 沈利生, 张育宾. 海洋波浪能发电技术的发展与应用[J]. 能源研究与管理, 2010, (4): 55- 58.
SHEN Lisheng , ZHANG Yubin . Development and application of the power generation technology of oceanic wave[J]. Energy Research and Management, 2010, (4): 55- 58.
2 MCCORMICK M E . Ocean wave energy conversion[J]. Renewable Energy, 1986, 1 (11): 1309- 1319.
3 刘延俊, 王伟, 陈志, 等. 波浪能发电装置浮体形状参数对俘能性能影响[J]. 山东大学学报(工学版), 2020, 50 (6): 1- 8.
LIU Yanjun , WANG Wei , CHEN Zhi , et al. The influence of shape parameters of wave energy device floating body on energy capture characteristics[J]. Journal of Shandong University (Engineering Science), 2020, 50 (6): 1- 8.
4 黄淑亭, 翟晓宇, 刘延俊, 等. 淹没深度对三自由度波能浮子获能的影响[J]. 山东大学学报(工学版), 2020, 50 (6): 17- 22.
HUANG Shuting , ZHAI Xiaoyu , LIU Yanjun , et al. Comparative study of the floating and submerged three-freedom oscillating body wave energy converters[J]. Journal of Shandong University (Engineering Science), 2020, 50 (6): 17- 22.
5 ZHANG D H , AGGIDIS G , WANG Y F , et al. Wave tank experiments on the power capture of a multi-axis wave energy converter[J]. Journal of Marine Science and Technology, 2015, 20 (3): 520- 529.
doi: 10.1007/s00773-015-0306-5
6 ZHANG D H , AGGIDIS G , WANG Y F , et al. Experimental results from wave tank trials of a multi-axis wave energy converter[J]. Applied Physics Letters, 2013, 103 (10): 103901- 103904.
doi: 10.1063/1.4820435
7 NGUYEN H P , WANG C M , PEDROSO D M . Optimization of modular raft WEC-type attachment to VLFS and module connections for maximum reduction in hydro-elastic response and wave energy production[J]. Ocean Engineering, 2019, 172, 407- 421.
doi: 10.1016/j.oceaneng.2018.12.014
8 高辉. 振荡浮子式波浪发电装置最佳功率控制研究[D]. 广州: 华南理工大学, 2012.
GAO Hui. Research on optimal power tracking of oscillation-buoy wave energy device[D]. Guangzhou: South China University of Technology, 2012.
9 漆焱. 波浪能发电过程模拟及电能转换稳定性研究[D]. 济南: 山东大学, 2019.
QI Yan. Simulation of wave energy generation process and stability of electric energy conversion[D]. Jinan: Shandong University, 2019.
10 王坤林, 田联房, 王孝洪, 等. 液压蓄能式波浪能装置发电系统的特性[J]. 华南理工大学学报(自然科学版), 2014, 42 (6): 25- 31.
WANG Kunlin , TIAN Lianfang , WANG Xiaohong , et al. Characteristics of power generation system with hydraulic energy-storage wave energy converter[J]. Journal of South China University of Technology (Natural Science Edition), 2014, 42 (6): 25- 31.
11 管士飞. 海上漂浮式波浪能转换系统测试及性能优化研究[D]. 大连: 大连海事大学, 2012.
GUAN Shifei. The testing and performance optimization of the floating wave energy conversion system[D]. Dalian: Dalian Maritime University, 2012.
12 张伟. 液压波浪能发电装置稳定性及控制策略研究[D]. 济南: 山东大学, 2018.
ZHANG Wei. Study on stability and control strategy of hydraulic wave power generation device[D]. Jinan: Shandong University, 2018.
13 华军, 李德堂, 陈丽雪, 等. 基于蓄能器的液压传动系统研究[J]. 海洋开发与管理, 2019, 36 (12): 80- 84.
HUA Jun , LI Detang , CHEN Lixue , et al. Hydraulic transmission system based on accumulator[J]. Ocean Development and Management, 2019, 36 (12): 80- 84.
14 姚琦, 王世明, 胡海鹏. 波浪能发电装置的发展与展望[J]. 海洋开发与管理, 2016, 33 (1): 86- 92.
YAO Qi , WANG Shiming , HU Haipeng . On the development and prospect of wave energy power generation device[J]. Ocean Development and Management, 2016, 33 (1): 86- 92.
15 石世宁, 訚耀保. 摆式海洋波浪能量转换原理与应用[J]. 液压气动与密封, 2013, 33 (1): 1- 5.
SHI Shining , YIN Yaobao . Principle and application of pendulum ocean wave power generation[J]. Hydraulics Pneumatics & Seals, 2013, 33 (1): 1- 5.
16 张家明, 黎明, 张帅, 等. 100 kW组合型振荡浮子式波浪发电装置能量转换系统研究[J]. 太阳能学报, 2017, 38 (12): 3355- 3362.
ZHANG Jiaming , LI Ming , ZHANG Shuai , et al. Energy conversion system research of 100 kW combined oscillating float wave power plant[J]. Acta Solar Energy, 2017, 38 (12): 3355- 3362.
17 梁双令. 液压蓄能式波浪发电装置的运动分析与控制[D]. 哈尔滨: 哈尔滨工程大学, 2016.
LIANG Shuangling. Motion analysis and control of hydraulic energy storge type wave energy converter[D]. Harbin: Harbin Engineering University, 2016.
18 段春明, 朱永强. 一种新型振荡水柱式波浪能发电装置的设计[J]. 上海海洋大学学报, 2013, (3): 446- 451.
DUAN Chunming , ZHU Yongqiang . Design of a new OWC wave power generation device[J]. Journal of Shanghai Ocean University, 2013, (3): 446- 451.
19 单长飞. 单浮子式波浪能发电装置的水动力性能研究[D]. 镇江: 江苏科技大学, 2013.
SHAN Changfei. Hydrodynamic performance research of a single float type wave power conversion device[D]. Zhenjiang: Jiangsu University of Science and Techno-logy, 2013.
20 宋志安. 基于MATLAB的液压伺服控制系统分析与设计[M]. 北京: 国防工业出版社, 2007.
SONG Zhian . Analysis and design of hydraulic servo control system based on MATLAB[M]. Beijing: National Defense Industry Press, 2007.
[1] 孙香花. 基于距离向量的改进WSN路由算法[J]. 山东大学学报(工学版), 2012, 42(6): 25-30.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!