您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(工学版)》

山东大学学报(工学版) ›› 2012, Vol. 42 ›› Issue (2): 70-76.

• 机械工程 • 上一篇    下一篇

永磁同步电机的转动惯量辨识及状态估计

丁信忠1,张承瑞1*,李虎修1,于乐华2   

  1. 1. 山东大学机械工程学院, 山东 济南 250061;
    2.山东大学控制科学与工程学院,山东 济南 250061
  • 收稿日期:2011-10-26 出版日期:2012-04-20 发布日期:2011-10-26
  • 通讯作者: 张承瑞(1957- ),男,福建福安人,教授,博士生导师,主要研究方向为软件化开放式数控系统. E-mail: zhangchengrui@gmail.com E-mail: zhangchengrui@gmail.com
  • 作者简介:丁信忠(1983- ),男,山东淄博人,博士研究生,主要研究方向为伺服驱动技术.E-mail: xinzhong.ding@gmail.com
  • 基金资助:

    山东省科技攻关项目(2009GG10004006)

Identification of inertia and state estimation for PMSM

DING Xin-zhong1, ZHANG Cheng-rui1*, LI Hu-xiu1, YU Le-hua2   

  1. 1. School of Mechanical Engineering, Shandong University, Jinan 250061, China;
    2. School of Control Science and Engineering, Shandong University, Jinan 250061, China
  • Received:2011-10-26 Online:2012-04-20 Published:2011-10-26

摘要:

为提高永磁同步电机伺服系统的动态性能和鲁棒性,研究了基于模型参考自适应系统的转动惯量辨识方法以及基于卡尔曼滤波器的自适应状态估计策略。提出了一种适用于宽转速、高噪声环境下的电机角速度、角位移和负载扰动转矩的在线估计方法,分析了该方法的抗干扰能力以及系统参数变化对估计效果的影响,并通过辨识出的伺服系统转动惯量对卡尔曼滤波器的系数矩阵进行实时更新,实现了转动惯量自适应状态估计。仿真和实验结果表明该算法在速度分辨率、实时性和抗干扰能力上均优于传统M/T方法。

关键词: 模型参考自适应, 转动惯量辨识, 卡尔曼滤波器, 状态估计, 永磁同步电机

Abstract:

 Based on theories of the model reference adaptive system (MRAS) and the Kalman filter, the online inertia identification and state estimation of permanent magnet synchronous motor (PMSM) servo system were  respectively studied for improving the dynamic performance and robustness. In the proposed algorithm, an optimal state estimator based on the Kalman filter was used to provide exact estimation for the rotor speed, rotor position and disturbance torque in a random noisy environment. Also, the MRAS was incorporated to identify the variations of inertia moment real time, and the identified inertia was used to adapt the EKF for better dynamic performance. In addition, the disturbancerejection ability to variations of the mechanical parameters was discussed, and it was verified that the system was robust to the modeling error and system noise. Simulation and experimental results showed that, compared with the M/T method, the proposed technique had better performance in speed resolution, real-time and anti-interference ability.

Key words: model reference adaptive system, inertia identification, Kalman filter, state estimation, permanent magnet synchronous motor

[1] 宋正强,杨辉玲,肖丹. 基于在线粒子群优化方法的IPMSM驱动电流和速度控制器[J]. 山东大学学报(工学版), 2018, 48(1): 112-116.
[2] 韩学山,王俊雄,孙东磊,李文博,张心怡,韦志清. 计及空间关联冗余的节点负荷预测方法[J]. 山东大学学报(工学版), 2017, 47(6): 7-12.
[3] 黄洁,何潇. 基于两阶段TKF的测量死区下离散时间系统的故障估计[J]. 山东大学学报(工学版), 2017, 47(5): 136-142.
[4] 赵英弘,何潇,周东华. 一类含有传感器故障的网络化系统容错估计[J]. 山东大学学报(工学版), 2017, 47(5): 71-78.
[5] 孙一冰,付敏跃,王炳昌,张焕水. 大规模动态系统的分布式状态估计算法[J]. 山东大学学报(工学版), 2016, 46(6): 62-68.
[6] 兰义华,任浩征*,张勇,赵雪峰. 一种基于“当前”模型的改进卡尔曼滤波算法[J]. 山东大学学报(工学版), 2012, 42(5): 12-17.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!