山东大学学报 (工学版) ›› 2025, Vol. 55 ›› Issue (4): 72-83.doi: 10.6040/j.issn.1672-3961.0.2025.004
• 机器学习与数据挖掘 • 上一篇
蒋风洋1,2,程瑶1,2*,韩哲2,王怀震1,2,周风余3,董磊2
JIANG Fengyang1,2, CHENG Yao1,2*, HAN Zhe2, WANG Huaizhen1,2, ZHOU Fengyu3, DONG Lei2
摘要: 针对机器人在室内外建图定位精度低、场景适应性差的问题,提出一种基于双目相机的紧耦合激光雷达(light detection and ranging, LiDAR)视觉惯性里程计平滑建图定位(tightly-coupled LiDAR-visual-inertial odometry via smoothing, mapping, and relocalization by stereo, LVI-SAM-Stereo)方法。采用点线和点面距离构建激光雷达惯性位姿估计模型;利用多传感器信息交互实现双目惯性里程计快速初始化,基于最小化重投影误差优化里程计位姿;提出融合Scan-Context与视觉特征的跨模态回环检测机制,有效减少错误回环;构建重定位双向优化架构,将因子图优化的里程计信息用作视觉跟踪的初始位姿估计,基于多点透视(perspective-n-point, PnP)求解视觉位姿辅助激光雷达点云配准。通过数据集和真实场景的大量试验,相较于紧耦合激光雷达惯性里程计平滑建图(tightly-coupled LiDAR inertial odometry via smoothing and mapping, LIO-SAM)方法和紧耦合激光雷达视觉惯性里程计平滑建图(tightly-coupled LiDAR-visual-inertial odometry via smoothing and mapping, LVI-SAM)方法,LVI-SAM-Stereo方法在室外场景的建图精度分别提升3.10%和5.97%,在室内场景的平均漂移分别降低72.7%和43.05%,建图精度和场景适应性显著提升。重定位满足机器人自主导航的工程需求。
中图分类号:
| [1] YIN H S, LI S M, TAO Y, et al. Dynam-SLAM: an accurate, robust stereo visual-inertial SLAM method in dynamic environments[J]. IEEE Transactions on Robotics, 2023, 39(1): 289-308. [2] YU Z L, ZHU L D, LU G Y. Tightly-coupled fusion of VINS and motion constraint for autonomous vehicle[J]. IEEE Transactions on Vehicular Technology, 2022, 71(6): 5799-5810. [3] ZHONG X L, LI Y H, ZHU S Q, et al. LVIO-SAM: a multi-sensor fusion odometry via smoothing and mapping[C] //2021 IEEE International Conference on Robotics and Biomimetics(ROBIO). Sanya, China: IEEE, 2021: 440-445. [4] CAMPOS C, ELVIRA R, RODRÍGUEZ J J G, et al. ORB-SLAM3: an accurate open-source library for visual, visual-inertial, and multimap SLAM[J]. IEEE Transac-tions on Robotics, 2021, 37(6): 1874-1890. [5] SHAN T X, ENGLOT B, MEYERS D, et al. LIO-SAM: tightly-coupled LiDAR inertial odometry via smoothing and mapping[C] //2020 IEEE/RSJ International Conference on Intelligent Robots and Systems(IROS). Las Vegas, USA: IEEE, 2020: 5135-5142. [6] SHAN T X, ENGLOT B, RATTI C, et al. LVI-SAM: tightly-coupled LiDAR-visual-inertial odometry via smoo-thing and mapping[C] //2021 IEEE International Conference on Robotics and Automation(ICRA). Xi'an, China: IEEE, 2021: 5692-5698. [7] LIN Y, GAO F, QIN T, et al. Autonomous aerial navigation using monocular visual-inertial fusion[J]. Journal of Field Robotics, 2018, 35(1): 23-51. [8] HUANG J, ZHANG Y D, LI X. LiDAR-visual-inertial odometry using point and line features[C] //2022 4th International Conference on Robotics and Computer Vision(ICRCV). Wuhan, China: IEEE, 2022: 215-222. [9] JIA Y X, NI Z K, NI X, et al. A multi-sensor fusion localization algorithm via dynamic target removal[C] //2023 15th International Conference on Intelligent Human-Machine Systems and Cybernetics(IHMSC). Hangzhou, China: IEEE, 2023: 138-142. [10] LIU Z B, LI Z K, LIU A, et al. LVI-Fusion: a robust LiDAR-visual-inertial SLAM scheme[J]. Remote Sen-sing, 2024, 16(9): 1524. [11] SEGAL A, HAEHNEL D, THRUN S. Generalized-ICP[C] //Robotics: Science and Systems. Seattle, USA: MIT, 2009: 435. [12] LEPETIT V, MORENO-NOGUER F, FUA P. EPnP: an accurate O(n)solution to the PnP problem[J]. International Journal of Computer Vision, 2009, 81(2): 155-166. [13] LV J J, XU J H, HU K W, et al. Targetless calibration of LiDAR-IMU system based on continuous-time batch estimation[C] //2020 IEEE/RSJ International Con-ference on Intelligent Robots and Systems(IROS). Las Vegas, USA: IEEE, 2020: 9968-9975. [14] QUIGLEY M, CONLEY K, GERKEY B, et al. ROS: an open-source robot operating system[C] //ICRA Workshop on Open Source Software. Kobe, Japan: IEEE, 2009: 3-5. [15] CHUM O, MATAS J, KITTLER J. Locally optimized RANSAC[C] //Joint Pattern Recognition Symposium. Heidelberg, Germany: Springer, 2003: 236-243. [16] HELMBERGER M, MORIN K, BERNER B, et al. The Hilti SLAM challenge dataset[J]. IEEE Robotics and Automation Letters, 2022, 7(3): 7518-7525. |
| [1] | 吕斌,刘淼,吴建清,张子毅,陈启香. 数字地图拼接技术综述[J]. 山东大学学报 (工学版), 2025, 55(3): 1-15. |
| [2] | 张海森,张煌,王常顺. 基于多机器人编队控制的大件物品协同搬运[J]. 山东大学学报 (工学版), 2023, 53(4): 157-162. |
| [3] | 张迪,徐德. 面向移动机器人的室外环境多层次地图构建[J]. 山东大学学报 (工学版), 2023, 53(2): 34-41. |
| [4] | 刘斌,张萌. 用于腿足式机器人落地缓冲的复合控制策略[J]. 山东大学学报 (工学版), 2022, 52(4): 20-28. |
| [5] | 吴建清,宋修广. 同步定位与建图技术发展综述[J]. 山东大学学报 (工学版), 2021, 51(5): 16-31. |
| [6] | 梁启星,李彬,李志,张慧,荣学文,范永. 基于模型预测控制的四足机器人斜坡自适应调整算法与实现[J]. 山东大学学报 (工学版), 2021, 51(3): 37-44. |
| [7] | 王薇,吴锋,周风余. 机器人操作技能自主认知与学习的研究现状与发展趋势[J]. 山东大学学报 (工学版), 2019, 49(6): 11-24. |
| [8] | 赵洪华,赵建,段星光,胡志通,田倩倩,赵耀华. 颌骨重建手术多臂机器人构型设计与干涉分析[J]. 山东大学学报 (工学版), 2019, 49(6): 73-80. |
| [9] | 李彩虹,方春,王志强,夏斌,王凤英. 基于超混沌同步控制的移动机器人全覆盖路径规划[J]. 山东大学学报 (工学版), 2019, 49(6): 63-72. |
| [10] | 孔令龙,田国会. 智能家庭中一种基于本体的机器人服务认知机制[J]. 山东大学学报 (工学版), 2019, 49(6): 45-54. |
| [11] | 刘美珍,周风余,李铭,王玉刚,陈科. 基于模型不确定补偿的轮式移动机器人反演复合控制[J]. 山东大学学报 (工学版), 2019, 49(6): 36-44. |
| [12] | 尹磊, 周风余, 李铭, 王玉刚, 郭银博, 陈科. 基于微服务的服务机器人云服务设计方法[J]. 山东大学学报 (工学版), 2019, 49(6): 55-62. |
| [13] | 吴禹均,吴巍,郭毓,郭健. 一种基于力觉的机器人对孔装配方法[J]. 山东大学学报 (工学版), 2019, 49(5): 119-126. |
| [14] | 张冕,黄颖,梅海艺,郭毓. 基于Kinect的配电作业机器人智能人机交互方法[J]. 山东大学学报 (工学版), 2018, 48(5): 103-108. |
| [15] | 辛亚先,李贻斌,李彬,荣学文. 四足机器人静-动步态平滑切换算法[J]. 山东大学学报(工学版), 2018, 48(4): 42-49. |
|
||