您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(工学版)》

山东大学学报 (工学版) ›› 2025, Vol. 55 ›› Issue (4): 118-126.doi: 10.6040/j.issn.1672-3961.0.2025.046

• 土木工程 • 上一篇    

渗流作用下土-结构接触面变形特性试验研究

李光1,刘健2,周立志2,李霄汉2,吕高航2,解全一2*   

  1. 1.山东省海河淮河小清河流域水利管理服务中心, 山东 济南250014;2.山东大学齐鲁交通学院, 山东 济南 250002
  • 发布日期:2025-08-31
  • 作者简介:李光(1969— ),男,河北景县人,高级工程师,主要研究方向为水利结构安全分析. E-mail:liguangylzx@163.com. *通信作者简介:解全一(1992— ),男,山东淄博人,副研究员,博士,主要研究方向为土石堤坝风险感知. E-mail:xiequanyi@sdu.edu.cn
  • 基金资助:
    山东省自然科学基金资助项目(ZR2022DKX001);泰山学者工程专项经费资助项目(tstp20221153)

Experimental study on deformation characteristics of soil-structure interface under seepage conditions

LI Guang1, LIU Jian2, ZHOU Lizhi2, LI Xiaohan2, LÜ Gaohang2, XIE Quanyi2*   

  1. LI Guang1, LIU Jian2, ZHOU Lizhi2, LI Xiaohan2, LÜ
    Gaohang2, XIE Quanyi2*(1. Haihe River, Huaihe River and Xiaoqinghe River Basin Water Conservancy Management and Service Center of Shandong Province, Jinan 250014, Shandong, China;
    2. School of Qilu Transportation, Shandong University, Jinan 250002, Shandong, China
  • Published:2025-08-31

摘要: 为了解决渗流作用下土-结构接触面变形条件难判定的问题,本研究设计了土-结构接触面渗流变形试验装置,研究渗流作用下接触面变形、土体表面变形、土体内部变形分布规律以及随水力坡降增加的演化规律,分析了不同接触面和土质对接触面渗流破坏的影响机制。结果表明:(1)试验中接触面水平方向的变形呈对称分布,垂直于接触面方向上的土体内部变形随距离增加呈现非线性减小的趋势;(2)土-结构接触面渗流破坏过程分为稳定、过渡和破坏3个阶段,接触面变形、接触面渗透系数在3个阶段分别呈现线性增大、非线性增大和激增的趋势;(3)砂土-结构接触面渗流破坏时的应变普遍为9.0%左右,粉土-结构接触面渗流破坏时的应变为7.9%~9.1%,低液限黏土-结构接触面渗流破坏时的应变为5.2%~6.5%。

关键词: 渗流, 土-结构接触面, 变形, 演化规律, 水力梯度

Abstract: In order to solve the problem that it was difficult to determine the deformation condition of the soil-structure interface under seepage, an experimental device for studying seepage-induced deformation at this interface was designed. This study investigated the distribution characteristics of interface deformation, soil surface deformation, and internal soil deformation, as well as their evolution with increasing hydraulic gradient under seepage action. The influence mechanism of different interface types and soil types on interface seepage failure was analyzed. The main conclusions were as follows:(1)the horizontal deformation of the contact surface was symmetrical in the test, the internal deformation of soil in the direction perpendicular to the contact surface showed a nonlinear decreasing trend with the increase of distance;(2)The seepage failure process of soil structure interface could be divided into three stages, stability, transition and failure, the deformation of the contact surface and the permeability coefficient of the contact surface showed the trend of linear increase, nonlinear increase and sharp increase in the three stages respectively;(3)The strains at the sand-structure interface were generally about 9.0%, strains at the silt-structure interface ranged from 7.9% to 9.1%, while strains at the low-liquid-limit clay-structure interface ranged from 5.2% to 6.5%.

Key words: seepage, soil-structure contact surface, deformation, evolution law, hydraulic gradient

中图分类号: 

  • TU43
[1] HU Z, YANG Z X, WILKINSON S P. Analysis of passive earth pressure modification due to seepage flow effects[J]. Canadian Geotechnical Journal, 2018, 55(5): 666-679.
[2] RICHARDS D J, WIGGAN C A, POWRIE W. Seepage and pore pressures around contiguous pile retaining walls[J]. Geotechnique, 2016, 66(7): 523-532.
[3] XIE Q Y, LIU J, HAN B, et al. Experimental investigation of interfacial erosion on culvert-soil interface in earth dams[J]. Soils and Foundations, 2019, 59(3): 671-686.
[4] ZHANG G, ZHANG J M. Numerical modeling of soil-structure interface of a concrete-faced rockfill dam[J]. Computers and Geotechnics, 2009, 36(5): 762-772.
[5] BALLOFFET A, SCHEFFLER M L. Numerical analysis of the Teton Dam failure flood[J]. Journal of Hydraulic Research, 1982, 20(4): 317-328.
[6] SCOTT R F. Baldwin Hills reservoir failure in review[J]. Engineering Geology, 1987, 24(1/2/3/4): 103-125.
[7] 李君纯. 青海沟后水库溃坝原因分析[J]. 岩土工程学报, 1994(6): 1-14. LI Junchun.Gouhou dam and analysis for causes of the dam failure[J]. Chinese Journal of Geotechnical Engineering, 1994(6): 1-14.
[8] 刘杰. 八一水库溃坝原因分析[J]. 中国水利水电科学研究院学报, 2004,2(3): 161-166. LIU Jie. Analysis of dam break of Bayi reservoir[J]. Journal of China Institute of Water Resources and Hydropower Research, 2004, 2(3): 161-166.
[9] 中国水利年鉴编委会. 中国水利年鉴[M]. 北京: 中国水利水电出版社, 2023: 17.
[10] WUDTKE R B, WITT K J. A static analysis of hydraulic heave in cohesive soil[C] // International Conference on Scour and Erosion, Amsterdam, Netherlands: CURNET, 2015: 721-726.
[11] FONTANA N. Experimental analysis of heaving phenomena in sandy soils[J]. Journal of Hydraulic Engineering, 2008, 134(6): 794-799.
[12] YOUSEFI M, SEDGHI-ASL M, PARVIZI M. Seepage and boiling around a sheet pile under different experimental configuration[J]. Journal of Hydrologic Engineering, 2016, 21(12): 1-9.
[13] HONG Y, NG C W W. Basestability of multi-propped excavations in soft clay subjected to hydraulic uplift[J]. Canadian Geotechnical Journal, 2013, 50(2): 153-164.
[14] 罗玉龙, 吴强, 詹美礼, 等. 考虑应力状态的悬挂式防渗墙-砂砾石地基管涌临界坡降试验研究[J]. 岩土力学, 2012, 36(增刊1): 73-78. LUO Yulong, WU Qiang, ZHAN Meili, et al. Study of critical piping hydraulic gradient of suspended cut-off wall and sand gravel foundation under different stress states[J]. Rock and Soil Mechanics, 2012, 36(Suppl.1): 73-78.
[15] 毛昶熙, 段祥宝, 蔡金傍, 等. 悬挂式防渗墙控制管涌发展的试验研究[J]. 水利学报, 2005, 36(1): 42-50. MAO Changxi, DUAN Xiangbao, CAI Jinbang, et al. Experimental study on piping development control by means of suspended cut-off wall[J]. Journal of Hydraulic Engineering, 2005, 36(1): 42-50.
[16] 周晓杰, 丁留谦, 姚秋玲, 等. 悬挂式防渗墙控制堤基渗透变形发展模型试验[J]. 水力发电学报, 2007, 26(2): 54-59. ZHOU Xiaojie, DING Liuqian, YAO Qiuling, et al. Laboratory model test for evolution of seepage deformation controlled by means of suspended cut-off wall in foundation of dike[J]. Journal of Hydroelectric Engineering, 2007, 26(2): 54-59.
[17] 王保田, 陈西安. 悬挂式防渗墙防渗效果的模拟试验研究[J]. 岩石力学与工程学报, 2008, 27(增刊1): 2766-2771. WANG Baotian, CHEN Xi'an. Research on effect of suspended cut-off wall with simulation test[J]. Chinese Journal of Rock Mechanics and Engineering, 2008, 27(Suppl.1): 2766-2771.
[18] 邵生俊, 杨春鸣. 粗粒土泥浆护壁防渗墙的抗渗设计方法研究[J]. 水利学报, 2015, 46(增刊1): 46-53. SHAO Shengjun, YANG Chunming.Research on the impermeability design method of the slurry protection diaphragm wall in the coarse grained soil foundation[J]. Journal of Hydraulic Engineering, 2015, 46(Suppl.1): 46-53.
[19] 李想, 盛金昌, 詹美礼, 等. 超固结对防渗墙与高塑性粘土接触结构渗透性的影响[J]. 水电能源科学, 2012, 30(9): 70-72. LI Xiang, SHENG Jinchang, ZHAN Meili, et al.Influence of over-consolidation on permeability of contact zone between concrete cutoff wall and high plasticity clay[J]. Water Resources and Power, 2012, 30(9): 70-72.
[20] KIM H J, PARK J M, SHIN J H. Flow behavior and piping potential at the soil-structure interface[J]. Geotechnique, 2018, 69(1): 1-6.
[21] LOCKE M, INDRARATNA B, ADIKARI G. Time-dependent particle transport through granular filters[J]. Journal of Geotechnical and Geoenvironmental Engi-neering, 2021, 127(6): 521-529.
[22] REBOUL N, VINCENS E, CAMBOU B. A compu-tational procedure to assess the distribution of constriction sizes for an assembly of spheres[J]. Computersand Geotechnics, 2010, 37(1/2): 195-206.
[23] BEGUIN R, PHILIPPE P, FAURE Y H. Pore-scale flow measurements at the interface between a sandy layer and a model porous medium: application to statistical modeling of contact erosion[J]. Journal of Hydraulic Engineering ASCE, 2013, 139(1): 1-11.
[24] CYRIL G, YVES-HENRI F, RÉMI B, et al. Contact erosion at the interface between granular coarse soil and various base soils under tangential flow condition[J]. Journal of Geotechnical and Geoenvironmental Engi-neering, 2010, 136(5): 741-750.
[25] 朱亚军, 彭君, 陈群. 砂砾石与黏土的接触冲刷试验研究[J]. 岩土工程学报, 2016, 38(增刊2): 92-97. ZHU Yajun, PENG Jun, CHEN Qun. Contact scouring tests on sandy gravel and cohesive soil[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(Suppl.2): 92-97.
[26] 陈群, 彭君, 朱分清. 砂砾石与砂接触冲刷试验研究[J]. 岩土力学, 2016, 37(增刊1): 295-300. CHEN Qun, PENG Jun, ZHU Fenqing. Experimental study of contact scouring between sandy gravel and sand[J]. Rock and Soil Mechanics, 2016, 37(Suppl.1): 295-300.
[27] RÖNNQVIST H, VIKLANDER P. A unified-plot approach for the assessment of internal erosion in embankment dams[J]. International Journal of Geotechnical Engineering, 2016, 10(1): 66-80.
[28] GURBUZ A, PEKER I. Monitored performance of a concrete-faced sand-gravel dam[J]. Journal of Perform-ance of Constructed Facilities, 2016, 30(5): 04016011.
[29] 郝锋平. 曲亭水库水毁修复设计洪水计算[J]. 水科学与工程技术, 2016(3): 22-23. HAO Fengping. The flood calculation in the design of Quting reservoir water damage restoration[J]. Water Sciences and Engineering Technology, 2016(3): 22-23.
[30] REBOUL N, VINCENS E, CAMBOU B. A computational procedure to assess the distribution of constriction sizes for an assembly of spheres[J]. Computers and Geotechnics, 2010, 37(1/2): 195-206.
[31] 赵明阶, 余东, 赵火炎. 土石坝渗漏的波速-电阻率联合成像诊断试验研究[J]. 水利学报, 2012, 43(1): 118-126. ZHAO Mingjie, YU Dong, ZHAO Huoyan. Experi-mental study on velocity and resistivity combined tomography for diagnosing leakage in earth rock-fill dam[J]. Journal of Hydraulic Engineering, 2012, 43(1): 118-126.
[32] FELL R, WAN C F, CYGANIEWICZ J, et al. Time for development of internal erosion and piping in embankment dams[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2003, 129(4): 307-314.
[1] 祝明,石承龙,吕潘,刘现荣,孙驰,陈建城,范宏运. 基于优化长短时记忆网络的深基坑变形预测方法及其工程应用[J]. 山东大学学报 (工学版), 2025, 55(3): 141-148.
[2] 肖文斌,李靖,武科,王志强,许文彬,刘大鹏,张智棋,沈平. 湿陷性黄土微观力学特征及其路基沉降规律[J]. 山东大学学报 (工学版), 2024, 54(2): 163-173.
[3] 李鸿钊,张庆松,刘人太,陈新,辛勤,石乐乐. 浅埋地铁车站施工期地表变形风险预警[J]. 山东大学学报 (工学版), 2023, 53(6): 82-91.
[4] 李连祥, 马学祥, 杜维, 李胜群, 陈家财, 苏日嘎拉图. 土岩双元基坑数值分析方法与锚索回收方案[J]. 山东大学学报 (工学版), 2023, 53(5): 65-73.
[5] 刘健,杨浩,崔晓琳. 围压作用下土-结构接触渗流特性[J]. 山东大学学报 (工学版), 2023, 53(3): 60-68.
[6] 郑卫琴,许杰,孙杰,武科. 复合地层TBM隧道管片受力特征[J]. 山东大学学报 (工学版), 2022, 52(4): 210-213.
[7] 郑俊峰,陈晓燕,马正,陈青. 土石坝加固拓宽坝体变形及稳定性分析[J]. 山东大学学报 (工学版), 2022, 52(1): 85-92.
[8] 孙杰,武科,郑扬,李树忱,袁超,王修伟. 城市地铁TBM隧道掘进诱发既有建筑物变形的空间属性效应[J]. 山东大学学报 (工学版), 2021, 51(1): 32-38.
[9] 李连祥,王雷,赵永新,季相凯. 考虑支护结构作用的地下管廊真实受力模型[J]. 山东大学学报 (工学版), 2021, 51(1): 60-68.
[10] 于承新,张国建,赵永谦,刘晓东,丁新华,赵同龙. 基于数字测量技术的桥梁监测及预警系统[J]. 山东大学学报 (工学版), 2020, 50(1): 115-122.
[11] 刘杰, 王者超, 张宇鹏, 孙华阳. 岩石粗糙裂隙大范围雷诺数条件下渗流特性[J]. 山东大学学报 (工学版), 2019, 49(4): 70-77.
[12] 陈晓涛,张进生,黄波,鞠军伟,张百年,赵佳琦. 金刚石圆锯片基体辊压预应力处理工艺参数试验研究[J]. 山东大学学报 (工学版), 2019, 49(3): 103-107.
[13] 宋贵杰. 浅埋软岩段隧道进洞施工变形特征与失稳分析[J]. 山东大学学报(工学版), 2018, 48(2): 53-60.
[14] 李崴,王者超,李术才,丁万涛,王琦,宗智,刘克奇. 哈尔滨地铁粉质黏土力学性质与超前支护方式[J]. 山东大学学报(工学版), 2018, 48(2): 61-71.
[15] 张国建,于承新,郭广礼. 数字近景摄影测量在监测节制闸动态变形中的应用[J]. 山东大学学报(工学版), 2017, 47(6): 46-51.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!