您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(工学版)》

山东大学学报 (工学版) ›› 2025, Vol. 55 ›› Issue (4): 138-148.doi: 10.6040/j.issn.1672-3961.0.2024.344

• 能动工程 • 上一篇    

基于多维效益评价的工农协同发展模式研究现状及展望

刘浩1,姜钰湛2,王庆松2*,李子杨2,董运龙2,张宇杰2,张慧斌2   

  1. 1.山东大学后勤保障部, 山东 济南 250100;2.山东大学核科学与能源动力学院, 山东 济南 250061
  • 发布日期:2025-08-31
  • 作者简介:刘浩(1971— ),男,山东莱阳人,工程师,硕士,主要研究方向为能源管理. E-mail:liuhao@sdu.edu.cn. *通信作者简介:王庆松(1971— ),男,山东济南人,教授,博士生导师,博士,主要研究方向为可持续能源环境系统管理. E-mail:wqs@sdu.edu.cn
  • 基金资助:
    山东省自然科学基金资助项目(ZR2023MD079)

Research status and prospects of the industrial-agricultural collaborative development model based on a multi-dimensional benefit evaluation perspective

LIU Hao1, JIANG Yuzhan2, WANG Qingsong2*, LI Ziyang2, DONG Yunlong2, ZHANG Yujie2,ZHANG Huibin2   

  1. LIU Hao1, JIANG Yuzhan2, WANG Qingsong2*, LI Ziyang2, DONG Yunlong2, ZHANG Yujie2, ZHANG Huibin2(1. Logistics Support Department, Shandong University, Jinan 250100, Shandong, China;
    2. School of Nuclear Science, Energy and Power Engineering, Shandong University, Jinan 250061, Shandong, China
  • Published:2025-08-31

摘要: 当前基于多维效益评价协同模式的研究缺乏系统评估和前沿梳理,限制了效益评价视角下对该模式的全面了解。通过对工农协同低碳发展模式进行界定,基于文献调研、聚类分析等方法对当前协同路径、研究方法、效果评价等方面成果进行梳理,归纳了各研究维度的不足并进行展望。研究表明,多维效益视角下工农协同模式具有“多路径、高潜力、低风险”的特点,存在路径构建单一、研究过程整合弱及效果评价动态性弱等不足。从3个层面提出针对性的发展对策和建议,即在路径构建层面应构建多层次立体协同路径、研究方法层面应开展分阶段全周期研究、效果评价层面应构建动态评价体系。本研究可为该领域及相似领域的研究进一步深化和拓展提供有益的学术参考。

关键词: 低碳, 工农协同, 发展模式, 路径, 文献分析

Abstract: The current research on collaborative models based on multi-dimensional benefit evaluation lacked systematic assessment and frontier review, which restricted the comprehensive understanding of the model from the perspective of benefit evaluation. By defining the low-carbon development model of industry-agriculture collaboration, summarizing the achievements in current collaborative paths, research methods, effect evaluation, and other aspects based on literature research, cluster analysis, and other methods, the deficiencies in each research dimension were summarized and prospected. The study showed that the industry-agriculture collaboration model from the perspective of multi-dimensional benefits was characterized by "multiple paths, high potential and low risk", with deficiencies such as single path construction, weak integration in the research process, and weak dynamics in effect evaluation. Targeted development countermeasures and suggestions were proposed at three levels. At the path construction level, a multi-level three-dimensional collaborative path should be constructed. At the research method level, phased full-cycle research should be carried out. At the effect evaluation level, a dynamic evaluation system should be constructed. This study could provide useful academic references for the further deepening and expansion of research in this field and similar fields.

Key words: low carbon, industry-agriculture collaboration, development model, pathway, literature analysis

中图分类号: 

  • TK01+9
[1] OJALA M, CUNSOLO A, OGUNBODE C A, et al. Anxiety, worry, and grief in a time of environmental and climate crisis: a narrative review[J].Annual Review of Environment and Resources, 2021, 46(1): 35-58.
[2] TESKE S. The ‘Global Stocktake’ and the remaining carbon budgets for G20 countries to limit global temperature rise to +1.5 ℃[J]. SN Applied Sciences, 2023, 5(10): 256.
[3] REN F R, TIAN Z, CHEN H S, et al. Energy consumption, CO2 emissions, and agricultural disaster efficiency evaluation of China based on the two-stage dynamic DEA method[J]. Environmental Science and Pollution Research, 2021, 28(2): 1901-1918.
[4] KAMYAB H, SABERIKAMARPOSHTI M, HASHIM H, et al. Carbon dynamics in agricultural greenhouse gas emissions and removals: a comprehensive review[J]. Carbon Letters, 2024, 34(1): 265-289.
[5] LIU Z, DENG Z, DAVIS S J, et al. Global carbon emissions in 2023[J]. Nature Reviews Earth & Environment, 2024, 5(4): 253-254.
[6] ARORA C, KAMAT A, SHANKER S, et al. Integrating agriculture and industry 4.0 under "agri-food 4.0" to analyze suitable technologies to overcome agronomical barriers[J]. British Food Journal, 2022, 124(7): 2061-2095.
[7] BILGEN S, SARIKAYA I. Utilization of forestry and agricultural wastes[J]. Energy Sources Part A: Recovery Utilization and Environmental Effects, 2016, 38(23): 3484-3490.
[8] KUMAR SARANGI P, SUBUDHI S, BHATIA L, et al. Utilization of agricultural waste biomass and recycling toward circular bioeconomy[J]. Environmental Science and Pollution Research International, 2023, 30(4): 8526-8539.
[9] PENG X X, JIANG Y S, CHEN Z H, et al. Recycling municipal, agricultural and industrial waste into energy, fertilizers, food and construction materials, and economic feasibility: a review[J]. Environmental Chemistry Letters, 2023, 21(2): 765-801.
[10] 中华人民共和国农业农村部. 《农业农村部关于落实党中央国务院2023年全面推进乡村振兴重点工作部署的实施意见》(农发〔2023〕1号)[EB/OL].(2023-02-03)[2024-11-18]. https://www.gov.cn/zhengce/zhengceku/2023-02/22/content_5742671.htm
[11] 中华人民共和国农业农村部.《关于加快农业发展全面绿色转型促进乡村生态振兴的指导意见》(农规发〔2024〕27号)[EB/OL].(2024-12-26)[2025-05-22]. https://www.gov.cn/zhengce/zhengceku/202412/content_ 6995343.htm
[12] 中华人民共和国国务院.《乡村全面振兴规划(2024—2027年)》[EB/OL].(2025-01-22)[2025-05-22]. https://www.gov.cn/gongbao/2025/issue_11846/202502/content_7002798.html
[13] KOHNE T, SCHERFF J N, WEIGOLD M. Cascaded-heat merit order for industrial energy systems to evaluate district heating potential[J]. Production Engineering, 2023, 17(2): 307-318.
[14] WANG X T, ZHANG M. The thermal economy of a circulating medium and low temperature waste heatrecovery system of industrial flue gas[J].International Journal of Heat and Technology, 2021, 39(5): 1680-1688.
[15] World Steel Association. Steel statistical yearbook[EB/OL].(2022-11-24)[2024-11-18]. https://worldsteel.org/media/press-releases/2024/2024-steel-statistical-yearbook-published/
[16] WANG N, CHAI X X, GUO Z Q, et al. Hierarchy performance assessment of industrial solid waste utilization: tracking resource recycling and utilization centers in China[J]. Environmental Science and Pollution Research, 2023, 30(35): 83330-83340.
[17] 国家统计局. 中国电力消费量[EB/OL].(2024-09-25)[2024-11-18]. https://data.stats.gov.cn/easyquery.htm?cn=C01&zb=A070O&sj=2022
[18] ZHANG W, WANG Y R, SONG M L, et al. Industrial structure upgrading, technological innovation and comprehensive utilisation of solid waste[J]. Technology Analysis & Strategic Management, 2024, 36(11): 3637-3652.
[19] FAO. Food and agriculture organization statistical yearbook[EB/OL].(2025-01-08)[2025-05-22]. https://openknowledge.fao.org/server/api/core/bitstr-eams/d784864f-7f28-49d2-903e-6680d09a9d97/content/cd2971en.html
[20] FAO. Global forest resources assessment[EB/OL].(2020-07-15)[2024-11-18]. https://www.fao.org/interactive/forest-resources-assessment/2020/en/
[21] CHANG C C, LI R D. Agricultural waste[J]. Water Environment Research, 2019, 91(10): 1150-1167.
[22] TANG X, FENG J W, MAO X Y, et al. Will technological innovation uncertainty affect the distribution of benefits from low-carbon innovation activities in industrial clusters? a study based on gray Shapley values[J]. Managerial and Decision Economics, 2024, 45(4): 1743-1755.
[23] GUO H P, YI X, PAN C L, et al. Analysis on the temporal and spatial features of the coupling and coordination of industrialization and agricultural green development in China during 1990-2019[J]. Inter-national Journal of Environmental Research and Public Health, 2021, 18(16): 8320.
[24] 杨旭,周涛,汝小龙,等. 核电厂温排水余热综合利用模式研究[J]. 电力建设, 2013, 34(6): 56-59. YANG Xu, ZHOU Tao, RU Xiaolong, et al. Comprehensive utilization mode of thermal discharge residual heat in nuclear power plants[J]. Electric Power Construction, 2013, 34(6): 56-59.
[25] 徐火根, 罗威. 核电厂温排水余热利用与集中供热供冷研究[J]. 流体机械, 2024, 52(8): 100-104. XU Huogen, LUO Wei. Research on utilization of waste heat from nuclear power plant and central heating and cooling[J]. Fluid Machinery, 2024, 52(8): 100-104.
[26] GIORDANO L, BENEDETTI M. A methodology for the identification and characterization of low-temperature waste heat sources and sinks in industrial processes: application in the Italian dairy sector[J]. Energies, 2022, 15(1): 155.
[27] BEATRICE O. Waste heat from BillerudKorsnäs enables green industrial project[EB/OL].(2021-10-28)[2024-11-18]. https://www.electronicspecifier.com/industries/alternative-energy/waste-heat-from-billerudkorsn-s-enables- green-industrial-project
[28] SNIPES R L, COCKRUM L S, KEEVER S L, et al. TVA's waste heat program from technology developments to waste heat parks[J]. Proceedings of the American Power Conference, 1979, 41: 811-814.
[29] HOFMANN R. Waste heat utilization of nuclear power stations[J]. Bulletin des Schweizerischen Elektro-technischen Vereins, 1977, 68(16): 834-838.
[30] 枣庄市人民政府. 全市乡村振兴暨脱贫攻坚工作现场推进会“观摩项目之七:华沃智慧农业产业园项目[EB/OL].(2020-11-10)[2024-11-18]. http://www.zaozhuang.gov.cn/ywdt/zzyw/202011/t20201110_1303668. html
[31] 李金彬, 郭清华, 宋其非. 厂房余热改良农业大棚供热的热泵新技术实践[J]. 建筑节能(中英文), 2022, 50(8):130-135. LI Jinbin, GUO Qinghua, SONG Qifei.Retrofitted heat pump improving agricultural greenhouse heating with waste heat of the plant[J]. Building Energy Efficiency,2022, 50(8): 130-135.
[32] 兰陵县人民政府. 关于加快乡村产业振兴的提案的答复[EB/OL].(2024-08-12)[2024-11-18]. http://www.lanling.gov.cn/info/1070/1267462.htm
[33] MIERNICKI E A, HEALD A L, HUFF K D, et al. Nuclear waste heat use in agriculture: history and opportunities in the United States[J]. Journal of Cleaner Production, 2020, 267: 121918.
[34] MOSHOOD T D, NAWANIR G, ARIPIN N M, et al. Lean business model canvas and sustainable innovation business model based on the industrial synergy of microalgae cultivation[J]. Environmental Challenges, 2022, 6: 100418.
[35] CUTAIA L, SCAGLIARINO C, MENCHERINI U, et al. Industrial symbiosis in Emilia-Romagna region: results from a first application in the agroindustry sector[J].Procedia Environmental Science, Engineering and Management, 2014, 2(1): 11-36.
[36] 介休市人民政府. “千万工程”调研行 | 山西介休:工业反哺 激活乡村振兴“新引擎”[EB/OL].(2024-08-12)[2024-11-18]. https://www.jiexiu.gov.cn/zwgk/bmxxgkml/kfqxzjd/21jxmsz/fdzdnrgkmsz/gzdt21jxmsz/ content_41654
[37] 韩利红, 何余勇, 尹健康, 等. 烟草废弃物发酵制取有机肥及其在柑橘生产上的应用效果[J]. 肥料与健康, 2023, 50(6): 53-57. HAN Lihong, HE Yuyong, YIN Jiankang, et al. Preparation of organic fertilizer from tobacco waste and its application in citrus production[J]. Fertilizer and Health, 2023, 50(6): 53-57.
[38] 安顺市人民政府. 安顺普定:“三个突出”助推绿色低碳循环发展[EB/OL].(2024-10-23)[2024-11-18]. https://www.anshun.gov.cn/xwzx/xqzc/202410/t2024- 1023_85968802.html
[39] 乌兰察布市人民政府. 察右前旗:创新利用企业余热和废水,节能又环保[EB/OL].(2024-01-05)[2024-11-18]. https://www.wulanchabu.gov.cn/sqnggfwqyxx/1463645.html
[40] 郝仪佳, 夏咏, 张扬, 等. 西北地区水-能源-粮食系统耦合协调发展时空动态及预测分析[J]. 水土保持研究, 2025, 32(3): 251-259. HAO Yijia, XIA Yong, ZHANG Yang, et al. Research and forecast analysis on the coupling coordinated development of Water-Energy-Food system in Northwest China[J]. Research of Soil and Water Conservation, 2025, 32(3): 251-259.
[41] 邓秀新. 现代农业与农业发展[J]. 华中农业大学学报(社会科学版), 2014, 33(1): 1-4. DENG Xiuxin. Modern agriculture and agricultural development[J]. Journal of Huazhong Agricultural University(Social Sciences Edition), 2014, 33(1): 1-4.
[42] 李西玉. 产业融合视角下新泰市现代农业产业园现状及融合发展[J]. 农业科技通讯, 2023(9): 7-10. LI Xiyu. The present situation and integrated development of Xintai City modern agricultural industrial park from the perspective of industrial integration[J]. Bulletin of Agricultural Science and Technology, 2023(9): 7-10.
[43] QIAN R, GUO R, YANG Q X, et al. Can straw recycling achieve sustainable agriculture at the smallholder level? a case in a semi-arid region[J]. Journal of Cleaner Production, 2024, 439: 140859.
[44] JASIULEWICZ M. Possibility of liquid Bio-Fuels, electric and heat energy production from biomass in Polish agriculture[J]. Polish Journal of Environmental Studies, 2010, 19(3): 479-483.
[45] MCDONALD L J, PINTO A S S, NAVEED ARSHAD M, et al. Synergy between industry and agriculture: techno-economic and life cycle assessments of waste recovery for crop growth in glasshouses[J]. Journal of Cleaner Production, 2023, 432: 139650.
[46] KOO W K, SULAIMAN M A, SUBKI N S, et al. Treatment of oily waste using activated carbon from agriculture waste[J]. Materials Science Forum, 2016, 840: 432-437.
[47] 金涌, 罗志波, 胡山鹰, 等. “第六产业”发展及其化工技术支撑[J]. 化工进展, 2017, 36(4): 1155-1164. JIN Yong, LUO Zhibo, HU Shanying, et al. Development of the "Sixth Industry" and its support by chemical technology[J]. Chemical Industry and Engineering Progress, 2017, 36(4): 1155-1164.
[48] SONG J L, ZHANG H Y, ZHANG Y M, et al. Research progress on industrial waste heat recycling and seasonal energy storage[J]. AIMS Energy, 2025, 13(1):147-187.
[49] CHRISTODOULIDES P, AGATHOKLEOUS R, ARESTI L, et al. Waste heat recovery technologies revisited with emphasis on new solutions, including heat pipes,and case studies[J]. Energies, 2022, 15(1): 384.
[50] TUREK V, KILKOVSKY B, DAXNER J, et al. Industrial waste heat utilization in the European union: an engineering-centric review[J]. Energies, 2024, 17(9): 2084.
[51] OYEDEPO S O, FAKEYE B A. Waste heat recovery technologies: pathway to sustainable energy development[J]. Journal of Thermal Engineering, 2021, 7(1): 324-348.
[52] ONONOGBO C, NWOSU E C, NWAKUBA N R, et al. Opportunities of waste heat recovery from various sources: review of technologies and implementation[J]. Heliyon, 2023, 9(2): e13590.
[53] OCHIENG A O, MEGAHED T F, OOKAWARA S, et al. Comprehensive review in waste heat recovery in different thermal energy-consuming processes using thermoelectric generators for electrical power generation[J]. Process Safety and Environmental Protection, 2022, 162: 134-154.
[54] BEALL S E, MILLER A J. Urban utilization of extracted heat and waste heat from central station power plants[R]. Oak Ridge, USA: Oak Ridge National Lab, 1972.
[55] BHUKESH S K, GAWRE S K, KUMAR A. Review on advancement in solar and waste heat based thermoelectric generator[J]. Energy Sources Part A: Recovery Utilization and Environmental Effects, 2023, 45(2): 4982-5002.
[56] KONG L X, WU Z B, JIANG J L, et al. Characterization of a thermoelectric system based on a solar dish Stirling engine: a review[J]. Sustainable Energy & Fuels, 2024, 8(19): 4399-4428.
[57] ARJUNAN P, GNANA MUTHU J H, SOMANASAR RADHA S L, et al. Selection of working fluids for solar organic Rankine cycle:a review[J]. International Journal of Energy Research, 2022, 46(14): 20573-20599.
[58] GAROFALO E, BEVIONE M, CECCHINI L, et al. Waste heat to power: technologies, current applications, and future potential[J]. Energy Technology, 2020, 8(11): 2000413.
[59] POSKROBKO S, LACH J, KROL D. Research of calorimetric properties of some selected industrial wastes and fuels formed from wastes[J]. Energetyka, 2010,(3): 170-177.
[60] WINANGUN K, MALYADI M, MASYKUR F, et al. Drying agricultural waste briquettes using microwave method[C] //Sixth International Conference of Mathematical Sciences(ICMS 2022). Istanbul, Türkiye: AIP, 2023: 040006.
[61] GKOTSIS P, KOUGIAS P, MITRAKAS M, et al. Biogas upgrading technologies: recent advances in membrane-based processes[J]. International Journal of Hydrogen Energy, 2023, 48(10): 3965-3993.
[62] KUMAR J, VYAS S. Comprehensive review of biomass utilization and gasification for sustainable energy production[J]. Environment Development and Sus-tainability, 2025, 27(3): 1-40.
[63] ANATASYA A, UMIATI N A K, SUBAGIO A. The effect of binding types on the biomass briquette calorific value from cow manure as a solid energy source[J]. E3S Web of Conferences, 2019, 125(2): 13004.
[64] NANDITTA R V, GOYAL K, NAGULASH RAHUL B, et al. Review on process development and challenges in biomass pyrolysis[J]. Journal of Physics: Conference Series, 2021, 2054(1): 012043.
[65] HASSAN T, RAHMAN M M, RAHMAN M A, et al. Opportunities and challenges for the application of biodiesel as automotive fuel in the 21st century[J]. Biofuels, Bioproducts and Biorefining, 2022, 16(5): 1353-1387.
[66] KHERA A S, EL-GENDI H, EL-FAKHARANY E M, et al. A comprehensive overview of lignocellulosic biomass exploiting for sustainable bioethanol production: recent advances and emerging challenges towards commercial implementation[J]. Egyptian Journal of Chemistry, 2024, 67(13): 2053-2072.
[67] SABOOHI Z, HOSSEINI S E. Advancements in biogas production: process optimization and innovative plant operations[J]. Clean Energy, 2025, 9(2): 52-65.
[68] TEIXEIRA R S, SILVA A S, MOUTTA R O, et al. Biomass pretreatment: a critical choice for biomass utilization via biotechnological routes[J]. BMC Proceedings, 2014, 8(4): O34.
[69] ZHANG C Q, NIE J H, YAN X H. Estimation of biomass utilization potential in China and the impact on carbon peaking[J]. Environmental Science and Pollution Research, 2023, 30(41): 94255-94275.
[70] 张露青, 陈爱康, 顾玖, 等. 基于多能源网络路由算法的区域能源广域网协同规划[J].中国电机工程学报,2020,40(23):7499-7511. ZHANG Luqing, CHEN Aikang, GU Jiu, et al. Regional energy wide area network planning based on routing algorithm[J]. Proceedings of the CSEE, 2020, 40(23): 7499-7511.
[71] 滕云, 孙鹏, 张明理, 等. 基于农村新型产业结构的“能源-环境-经济”鲁棒优化模型[J]. 中国电机工程学报, 2022, 42(2): 614-631. TENG Yun, SUN Peng, ZHANG Mingli, et al. Robust optimization model of "energy-environment-economy" based on the new rural industrial structure[J]. Proceedings of the CSEE, 2022, 42(2): 614-631.
[72] 李民, 刘钦浩, 赵冠, 等. 考虑多元产业协同的乡村综合能源系统规划[J]. 中国电力, 2022, 55(8): 14-22. LI Min, LIU Qinhao, ZHAO Guan, et al.Rural integrated energy system planning considering multi-industry synergy[J]. Electric Power, 2022, 55(8): 14-22.
[73] FRANZ D, WEISE H. Multicriteria decision making in energy links between industrial and intensive agricultural production processes[J]. Wissenschaftliche Zeitschrift der Technischen Hochschule Ilmenau, 1987, 33(6): 147-152.
[74] HYUN I, LEE J, YOON Y, et al. The potential and utilization of unused energy sources for large-scale horticulture facility applications under Korean climatic conditions[J]. Energies, 2014, 7(8): 4781-4801.
[75] AHMADPOUR M, ROSHANDEL R, SHAFII M B. The effect of organic Rankine cycle system design on energy-based agro-industrial symbiosis[J]. Energy Efficiency, 2024, 17(5): 39.
[76] REZAEI F, BURG V, PFISTER S, et al. Spatial optimization of industrial symbiosis for heat supply of agricultural greenhouses[J]. Journal of Industrial Ecology, 2024, 28(6): 1507-1523.
[77] BALLIGAND P, LE GOUELLEC P, DUMONT M, et al. Experience gained in France on heat recovery from nuclear plants for agriculture and pisciculture[J]. Nuclear Technology, 1978, 38(1): 90-96.
[78] 熊助功, 王化, 王林兴. 利用工厂余热加温温室栽培春黄瓜[J]. 上海农业科技, 1980(6): 31-33.
[79] SANTOS V E N, MAGRINI A. Biorefining and industrial symbiosis: a proposal for regional development in Brazil[J]. Journal of Cleaner Production, 2018, 177:19-33.
[80] 济宁市人民政府. 山东邹城:蓄足村集体经济发展“源头活水”[EB/OL].(2023-11-17)[2024-11-18]. http://www.zoucheng.gov.cn/art/2023/11/17/art_72291_2807806.html?xxgkhide=1
[81] ALFARO J, MILLER S. Applying industrial symbiosis to smallholder farms[J]. Journal of Industrial Ecology, 2014, 18(1): 145-154.
[82] 茌平区人民政府. 一颗石子的六次变身:《山东新闻联播》播出信发集团发展循环经济典型经验[EB/OL].(2024-06-03)[2024-11-18]. http://www.chiping.gov.cn/channel_64e8b63ed064d72c7b49859b/doc_665d65b- 52f88c21055022469.html
[83] 日照市人民政府. 东港区:收集钢工业余热温暖八个社区的居民[EB/OL].(2023-12-15)[2024-11-18]. http://www.rizhao.gov.cn/art/2023/12/15/art_208352_10477796.html
[84] 白雪.加快供热领域碳减排应从源头降低碳排放强度[N].中国改革报, 2025-01-10(004).
[85] VOURDOUBAS J. Possibilities of using industrial waste heat for heating greenhouses in northern Greece[J]. Journal of Agricultural Science, 2018, 10(4): 116.
[86] 伏山镇人民政府. 工业反哺农业 助力产业振兴[EB/OL].(2024-02-24)[2024-11-18]. https://sdxw.iqilu.com/share/YS0yMS0xNTQwNzQ5Mg==.html
[87] LORIMER P, MILNER M, TOMSON F. Using waste and low carbon heat to power protected horticulture projects[C] //11th International Conference on Renewable Power Generation-Meeting Net Zero Carbon(RPG 2022). London, UK: IET, 2022: 58-59.
[88] KANG Y K, KANG S W, PAEK Y, et al. Heating performance analysis of the heat pump system for agricultural facilities using the waste heat of the thermal power plant as heat source[J]. Protected Horticulture and Plant Factory, 2017, 26(4): 317-323.
[89] 甘胜滕, 赵猛, 李琳, 等. 枣庄某水泥生产线余热农业高效利用实例分析[J]. 建筑节能(中英文), 2023, 51(5): 91-96. GAN Shengteng, ZHAO Meng, LI Lin, et al. An example of efficient utilization of waste heat from a cement production line in Zaozhuang, Shandong[J]. Building Energy Efficiency, 2023, 51(5): 91-96.
[90] GIORDANO L, BENEDETTI M, SALVIO M. Estimating the potential for waste heat recovery in Italian dairy sector using a bottom-up approach and data from energy audits[J]. Sustainability, 2023, 15(12): 9719.
[1] 赵红专,张鑫,张蓓聆,展新,李文勇,袁泉,王涛,周旦. 基于改进人工势场的智能车动态安全椭圆路径规划方法[J]. 山东大学学报 (工学版), 2025, 55(3): 46-57.
[2] 高君健,廖祝华,刘毅志,赵肄江. 基于分层多智能体强化学习的个性化与信号控制联合路径引导方法[J]. 山东大学学报 (工学版), 2025, 55(3): 34-45.
[3] 韩毅,刘毅超,关甜,兰理文,汤宁业. 改进A*和动态窗口法的无人车路径规划[J]. 山东大学学报 (工学版), 2025, 55(3): 16-24.
[4] 王瑞琪,刘继彦,鞠文杰,王为帅,许文泽,张祯滨. 考虑混合储能的电-氢系统日前-日内协同优化调度[J]. 山东大学学报 (工学版), 2025, 55(2): 28-36.
[5] 鄢仁武,林剑雄,李培强,吴国耀,匡宇. 考虑碳排放因子与动态重构的主动配电网双层优化策略[J]. 山东大学学报 (工学版), 2025, 55(2): 16-27.
[6] 高艳艳,周童,王旭,高洁,戴荣健. 地方政府和高速公路经营者低碳行为的演化博弈分析[J]. 山东大学学报 (工学版), 2024, 54(4): 150-158.
[7] 张飞凯,夏拥军,秦剑,游溢,彭飞. 基于A*算法的输电线路组塔施工吊装路径规划方法[J]. 山东大学学报 (工学版), 2024, 54(3): 141-148.
[8] 赵姣,杨倩倩,胡大伟,胡卉,李洋. 基于排队模型的电动物流车充电站选址和运输路径问题[J]. 山东大学学报 (工学版), 2024, 54(2): 47-59.
[9] 黄健堃,薛钢,刘延俊,王雨,李厚池,白发刚. 基于改进Bi-RRT算法的机器鱼路径规划方法[J]. 山东大学学报 (工学版), 2024, 54(1): 74-82.
[10] 扈萍,李萌,滕越,马少坤, 张西文. 考虑主应力偏转影响的基坑开挖应力路径[J]. 山东大学学报 (工学版), 2023, 53(6): 100-107.
[11] 郑泾飞,廖永新,王华珍,何霆. 基于提及图和显式路径的文档级关系抽取方法[J]. 山东大学学报 (工学版), 2023, 53(6): 16-25.
[12] 宋修广,郭鑫铭,闫方,李国强,田源. 公路应急救援车辆智能调度技术[J]. 山东大学学报 (工学版), 2023, 53(4): 1-17.
[13] 赵天怀,王目树,潘为刚,康超,秦石铭,徐飞. 挖掘机智能辅助施工系统设计[J]. 山东大学学报 (工学版), 2023, 53(4): 163-172.
[14] 王雨,刘延俊,贾华,薛钢. 基于强化RRT算法的机械臂路径规划[J]. 山东大学学报 (工学版), 2022, 52(6): 123-130.
[15] 张飞凯,黄永忠,李连茂,秦剑,刘晨. 基于Dijkstra算法的货运索道路径规划方法[J]. 山东大学学报 (工学版), 2022, 52(6): 176-182.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!