您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(工学版)》

山东大学学报 (工学版) ›› 2025, Vol. 55 ›› Issue (4): 127-137.doi: 10.6040/j.issn.1672-3961.0.2024.315

• 土木工程 • 上一篇    

基于GB-RAR技术的特大跨径桥梁动态变形规律监测

张国建1,付连龙1,张庆松2*,桑文刚1,李建强3,周鲁3,付涛4,刘胜震5   

  1. 1.山东建筑大学测绘地理信息学院, 山东 济南 250101;2.山东大学土建与水利学院, 山东 济南 250061;3.山东省路桥集团有限公司, 山东 济南 250013;4.山东建筑大学交通工程学院, 山东 济南 250101;5.自然资源部第一大地测量队, 陕西 西安 710054
  • 发布日期:2025-08-31
  • 作者简介:张国建(1989— ),男,山东济宁人,副教授,硕士生导师,博士,主要研究方向为工程测量与变形监测. E-mail:24155@sdjzu.edu.cn. *通信作者简介:张庆松(1970— ),男,山东费县人,教授,博士生导师,博士,主要研究方向为隧道及桥梁工程. E-mail:zhangqingsong@sdu.edu.cn
  • 基金资助:
    国家自然科学基金资助项目(52204097,42374049);山东省教育厅青年导师访学研修资助项目;山东省高等学校优秀青年创新团队资助项目(2024KJH087);山东省自然科学基金面上资助项目(ZR2022MD103);山东省大学生创新创业训练计划资助项目

Dynamic deformation law monitoring of extra-long span bridges based on GB-RAR technology

ZHANG Guojian1, FU Lianlong1, ZHANG Qingsong2*, SANG Wengang1, LI Jianqiang3, ZHOU Lu3, FU Tao4, LIU Shengzhen5   

  1. ZHANG Guojian1, FU Lianlong1, ZHANG Qingsong2*, SANG Wengang1, LI Jianqiang3, ZHOU Lu3, FU Tao4, LIU Shengzhen5(1. School of Surveying and Geo-Informatics, Shandong Jianzhu University, Jinan 250101, Shandong, China;
    2. School of Civil Engineering, Shandong University, Jinan 250061, Shandong, China;
    3. Shandong Hi-Speed Road and Bridge Group Co., Ltd., Jinan 250013, Shandong, China;
    4. School of Transportation Engineering, Shandong Jianzhu University, Jinan 250101, Shandong, China;
    5. First Geodetic Survey Team, Ministry of Natural Resources, Xi'an 710054, Shaanxi, China
  • Published:2025-08-31

摘要: 随着桥梁跨径的增大,桥梁柔性增强,桥梁动态挠度变形成为衡量桥梁是否健康运营的重要指标。传感器、测量机器人和GPS等常规监测技术由于自身的局限性,无法实现大跨径桥梁的无接触、高频和整体动态变形监测。本研究以黄河凤凰大桥为研究对象,采用GB-RAR技术监测车辆动荷载作用下的桥梁整体变形规律,并利用小波函数提升数据质量。研究成果表明,经小波去噪后,GB-RAR技术的测量中误差为0.016 5 mm,能够满足变形监测精度的要求。在车辆动荷载作用下,桥梁变形呈Wave-Sin-sqr模型演化,在跨中产生131.61 mm的最大挠度变形量,小于《公路桥涵设计通用规范》中桥梁变形容许值。本研究成果为黄河凤凰大桥等特大跨径桥梁的安全监测和加固设计提供了技术支持和数据支撑。

关键词: 地基雷达, 动荷载, 变形监测, 特大跨径桥梁

Abstract: As bridge spans increase, bridge flexibility is enhanced, making dynamic deflection deformation a critical indicator for assessing bridge health. Traditional monitoring methods, including sensors, measurement robots, and GPS, are limited in their ability to provide non-contact, high-frequency, and comprehensive dynamic deformation monitoring for large-span bridges. This research aimed to monitor the overall deformation patterns of the Yellow River Phoenix Bridge under dynamic vehicle loads using ground-based real aperture radar(GB-RAR)technology, with data quality enhanced through wavelet function analysis. The research results indicated that after wavelet denoising, the measurement error of GB-RAR was reduced to 0.016 5 mm, meeting the required accuracy for deformation monitoring. Under dynamic vehicle loads, bridge deformation followed the wave-sin-sqr model, with a maximum mid-span deflection deformation of 131.61 mm, which was within the tolerance specified by the General Codes for Highway Bridges and Culverts. These findings offered technological and data support for safety monitoring and reinforcement design of ultra-large-span bridges, such as the Yellow River Phoenix Bridge.

Key words: ground-based radar, dynamic load, deformation monitoring, ultra-large-span bridge

中图分类号: 

  • P237
[1] 刘兵, 潘芳. 新、旧《公路桥涵设计通用规范》中汽车荷载作用的比较分析[J]. 现代交通技术, 2017, 14(3): 57-61. LIU Bing, PAN Fang. Compare and study on vehicle and lane loading effect of new and old general specifications for design of highway bridges and culverts[J]. General Specifications for Design of Highway Bridges and Culverts, 2017, 14(3): 57-61.
[2] 何浩祥, 李晓飞, 闫维明. 考虑信噪比和车-桥耦合效应的桥梁健康监测[J]. 应用基础与工程科学学报, 2014, 22(1): 189-198. HE Haoxiang, LI Xiaofei, YAN Weiming. Health monitoring strategy for bridge considering signal to noise ratio and vehicle-bridge interaction[J]. Journal of Basic Science and Engineering, 2014, 22(1): 189-198.
[3] ZHU Y, SHUANG M, SUN D Q, et al. Algorithm and application of foundation displacement monitoring of railway cable bridges based on satellite observation data[J]. Applied Sciences, 2023, 13(5): 2868.
[4] 郭天惠, 崔耀月. 基于荷载试验修正的桥梁健康监测系统研究[J]. 公路, 2021, 66(8): 201-205.
[5] XUE C Y, PSIMOULIS P A. Monitoring the dynamic response of a pedestrian bridge by using low-cost GNSS receivers[J]. Engineering Structures, 2023, 284: 115993.
[6] 赵立都, 向中富, 周银, 等. 利用地面三维激光扫描进行桥梁挠度变形分析[J]. 测绘通报, 2022(5): 95-100. ZHAO Lidu, XIANG Zhongfu, ZHOU Yin, et al. Analysis of bridge deflection deformation based on ground three-dimensional laser scanning[J]. Bulletin of Surveying and Mapping, 2022(5): 95-100.
[7] 唐亮,吴桐,毛若愚,等.桥梁结构损伤定位的曲率影响线面积差方法[J].应用基础与工程科学学报,2022,30(3):541-553. TANG Liang, WU Tong, MAO Ruoyu, et al. Curvature influence line area difference method for damage location of bridge structures[J]. Journal of Basic Science and Engineering, 2022, 30(3): 541-553.
[8] 周志祥, 姜腾蛟, 唐亮, 等. 移动式三维激光扫描系统在桥面全息变形监测的应用研究[J]. 应用基础与工程科学学报, 2018, 26(5): 1078-1091. ZHOU Zhixiang, JIANG Tengjiao, TANG Liang, et al. Application of mobile three-dimensional laser scanning system in bridge deformation monitoring[J]. Journal of Basic Science and Engineering, 2018, 26(5): 1078-1091.
[9] 徐亚明, 王鹏, 周校, 等. 地基干涉雷达IBIS-S桥梁动态形变监测研究[J]. 武汉大学学报(信息科学版), 2013, 38(7): 845-849. XU Yaming, WANG Peng, ZHOU Xiao, et al. Research on dynamic deformation monitoring of bridges using ground-based interferometric radar IBIS-S[J]. Geomatics and Information Science of Wuhan University, 2013, 38(7): 845-849.
[10] PIERACCINI M, MICCINESI L, ABDORAZZAGH NEJAD A, et al. Experimental dynamic impact factor assessment of railway bridges through a radar interferometer[J]. Remote Sensing, 2019, 11(19): 2207.
[11] 石安平,周吕,王成,等.结合EMD与小波阈值去噪的GB-RAR桥梁监测信号去噪[J].测绘通报, 2022(增刊2):227-232. SHI Anping, ZHOU LÜ, WANG Cheng, et al. GB-RAR bridge monitoring signal denoising based on EMD and wavelet threshold denoising [J]. Bulletin of Surveying and Mapping, 2022(Suppl.2): 227-232.
[12] WANG C, ZHOU L, MA J, et al. GB-RAR deformation information estimation of high-speed railway bridge in consideration of the effects of colored noise[J]. Applied Sciences, 2022, 12(20): 10504.
[13] HU J Y, GUO J M, XU Y, et al. Differential ground-based radar interferometry for slope and civil structures monitoring: two case studies of landslide and bridge[J]. Remote Sensing, 2019, 11(24): 2887.
[14] ZHAO Y Q, ZHANG G Q, ZANG G C, et al. Monitoring bridge dynamic deformation law based on digital photography and ground-based RAR technology[J]. Applied Sciences, 2023, 13(19): 10838.
[15] NICO G, MASCI O, FOCSA A, et al. GBRAR measurement of vibration frequencies: synergy with micro-Doppler analysis of spaceborne SAR images[C] //IGARSS 2024-2024 IEEE International Geoscience and Remote Sensing Symposium. Athens, Greece:IEEE, 2024: 2349-2352.
[16] ZOU L L, NICO G, ALANI A M, et al. Strategy for vertical deformation of railway bridge monitoring using polarimetric ground-based real aperture radar system[J]. Structural Health Monitoring, 2024, 23(6): 3719-3730.
[17] PLACHY T, POLÁK M, RYJÁCEK P, et al. Experimental dynamic analysis of the arch road bridge[J]. IOP Conference Series: Earth and Environmental Science, 2021, 906(1): 012061.
[18] 中交公路规划设计院有限公司.公路桥涵设计通用规范:JTG D60—2015[S]. 北京:人民交通出版社,2004.
[19] 于承新, 张国建, 赵永谦, 等. 基于数字测量技术的桥梁监测及预警系统[J]. 山东大学学报(工学版), 2020, 50(1): 115-122. YU Chengxin, ZHANG Guojian, ZHAO Yongqian, et al. Bridge monitoring and warning system based on digital measurement technology[J]. Journal of Shandong University(Engineering Science), 2020, 50(1): 115-122.
[20] 张国建, 郭广礼, 于承新, 等. 快速摄影测量系统在观测桥梁震动变形中的应用[J]. 公路, 2017, 62(9): 193-197. ZHANG Guojian, GUO Guangli, YU Chengxin, et al. Application of rapid photogrammetry system in the deformation observation of bridge[J]. Highway, 2017, 62(9): 193-197.
[21] 张国建, 于承新. 数字近景摄影测量在桥梁变形观测中的应用[J]. 全球定位系统, 2016, 41(1): 91-95. ZHANG Guojian, YU Chengxin. The application of digital close-range photogrammetry in the deformation observation of bridge[J]. GNSS World of China, 2016, 41(1): 91-95.
[22] ZHANG G J, GUO G L, LI L, et al. Study on the dynamic properties of a suspended bridge using monocular digital photography to monitor the bridge dynamic deformation[J]. Journal of Civil Structural Health Monitoring, 2018, 8(4): 555-567.
[23] ZHANG G J, GUO G, YU C X, et al. Monitoring dynamic global deflection of a bridge by monocular digital photography[J]. The Civil Engineering Journal, 2018, 2018(2): 168-182.
[1] 郭海坡,文毅然,杨为民,丁万涛. 城市硬岩下地铁隧道管片壁后注浆隔振优化分析[J]. 山东大学学报 (工学版), 2024, 54(4): 95-105.
[2] 罗浩天,武科,厉雅萌,徐嘉祥,邢志豪. 波浪动荷载作用下吸力式桶形基础水平承载性能[J]. 山东大学学报 (工学版), 2021, 51(5): 100-106.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!