您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(工学版)》

山东大学学报 (工学版) ›› 2022, Vol. 52 ›› Issue (3): 127-133.doi: 10.6040/j.issn.1672-3961.0.2021.601

• • 上一篇    

脂质成分对γ-Fe2O3纳米颗粒与模型细胞膜相互作用的影响

张博雯,宋健,章涵穹,姜威*   

  1. 山东大学环境研究院, 山东 青岛 266237
  • 发布日期:2022-06-23
  • 作者简介:张博雯(1997— ),女,山东济南人,硕士,主要研究方向为环境界面化学. E-mail:zhangbowenanm@163.com. *通信作者简介:姜威(1978— ),女,黑龙江齐齐哈尔人,教授,博士,主要研究方向为环境界面化学. E-mail:jiangw@sdu.edu.cn
  • 基金资助:
    国家自然科学基金资助项目(41773110,21377070);国家自然科学基金山东联合基金资助项目(U2006214)

Effect of lipid compositions on the interaction between γ-Fe2O3 nanoparticles and model cell membranes

ZHANG Bowen, SONG Jian, ZHANG Hanqiong, JIANG Wei*   

  1. Environment Research Institute, Shandong University, Qingdao 266237, Shandong, China
  • Published:2022-06-23

摘要: 为探究细胞膜中不同脂质成分对γ-Fe2O3纳米颗粒物(nanoparticles,NPs)与膜相互作用的影响,参考真实细胞膜的脂质类型合成13种脂质成分不同的模型细胞膜,并测定γ-Fe2O3 NPs诱导的模型细胞膜完整性及膜流动性变化。结果表明,γ-Fe2O3 NPs能够吸附在膜上(甚至造成膜破碎)并诱导膜流动的增加。NPs与不同的模型细胞膜相互作用的强度不同,特别是鞘磷脂和胆固醇在膜中的共存(模拟脂筏的存在)会减弱NPs与膜的相互作用,而膜中正电位点的存在增强了NPs与膜的相互作用。脂质成分的不同会造成模型细胞膜表面电荷、活性基团和脂质分子堆积强度等膜性质的差异,进而影响NPs与膜相互作用的强度。本研究为探索γ-Fe2O3 NPs与细胞膜的相互作用提供了新的思路。

关键词: 氧化铁纳米颗粒物, 模型细胞膜, 脂质成分, 纳米颗粒物-细胞膜相互作用

中图分类号: 

  • X131
[1] CAMPOS E A, STOCKLER PINTO D V B, OLICWIEA J I S, et al. Synthesis, characterization and applications of iron oxide nanoparticles-a short review[J]. Aerosp Sci Technol, 2015, 7(3):267-276.
[2] WU Wei, JIANG Changzhong, ROY V A L. Recent progress in magnetic iron oxide-semiconductor composite nanomaterials as promising photocatalysts[J]. Nanoscale, 2015, 7(1):38-58.
[3] TUFANI A, QURESHI A, NIAZI J H. Iron oxide nanoparticles based magnetic luminescent quantum dots(MQDs)synthesis and biomedical/biological applications: a review[J]. Mater Sci Eng C, 2021, 118:111545.
[4] MAHER B A, GONET T. Prolific shedding of magnetite nanoparticles from banknote surfaces[J]. Sci Total Environ, 2021, 768:144490.
[5] MANDOREBA C, GWENZI W, CHAUKURA N. Defluoridation of drinking water using a ceramic filter decorated with iron oxide-biochar composites[J]. Int J Appl Ceram Tec, 2021, 18(4):1321-1329.
[6] ASSADIAN E, DEZHAMPANAH H, SEYDI E, et al. Toxicity of Fe2O3 nanoparticles on human blood lymphocytes[J]. J Biochem and Mol Toxic, 2019, 33(6):22303.
[7] LIU Ling, ZHOU Qiuhua, YANG Xuezhi, et al. Cytotoxicity of the soluble and insoluble fractions of atmospheric fine particulate matter[J]. J Environ Sci, 2020, 91:105-116.
[8] SHALEHI-REYHANI A, CES O, ELANI Y. Artificial cell mimics as simplified models for the study of cell biology [J]. Exp Biol Med, 2017, 242(13):1309-1317.
[9] HARAYAMA T, RIEZMAN H. Understanding the diversity of membrane lipid composition[J]. Nat Rev Mol Cell Bio, 2018, 19(5):281-296.
[10] CHEN K L, BOTHUN G D. Nanoparticles meet cell membranes: probing nonspecific interactions using model membranes[J]. Environl Sci Technol, 2013, 48(2):873-880.
[11] AGUDO-CANALEJO J, LIPOWSKY R. Critical particle sizes for the engulfment of nanoparticles by membranes and vesicles with bilayer asymmetry[J]. ACS Nano, 2015, 9(4):3704-3720.
[12] TIWARI A, PRINCE A, ARAKHA M, et al. Passive membrane penetration by ZnO nanoparticles is driven by the interplay of electrostatic and phase boundary conditions[J]. Nanoscale, 2018, 10(7):3369-3384.
[13] RIDOLFI A, CASELLI L, MONTIS C, et al. Gold nanoparticles interacting with synthetic lipid rafts: an AFM investigation[J]. J Microsc, 2020, 280(3):194-203.
[14] SEZGIN E, LEFENTAL I, MAYORS S, et al. The mystery of membrane organization: composition, regulation and roles of lipid rafts[J]. Nat Rev Mol Cell Bio, 2017, 18(6):361-374.
[15] DOBRZYNSKA I, SZACHOWICZ-PETELSKA B, SULKOWSKI S, et al. Changes in electric charge and phospholipids composition in human colorectal cancer cells[J]. Mo Cell Biochem, 2005, 276(1/2):113-119.
[16] WEI Xiaoran, YU Junchao, DING Lei, et al. Effect of oxide nanoparticles on the morphology and fluidity of phospholipid membranes and the role of hydrogen bonds[J]. J Environ Sci, 2017, 57:221-230.
[17] ZENG Yuxuan, WANG Qi, ZHANG Qiu, et al. Quantification of C60-induced membrane disruption using a quartz crystal microbalance[J]. RSC Adv, 2018, 8(18):9841-9849.
[18] MEER G V, VOELKER D R, FEIGENSON G W. Membrane lipids: where they are and how they behave[J]. Nat Rev Mol Cell Bio, 2008, 9(2):112-124.
[19] ZHANG Mengmeng, WEI Xiaoran, DING Lei, et al. Adhesion of CdTe quantum dots on model membranes and internalization into RBL-2H3 cells[J]. Environl Pollut, 2017, 225:419-427.
[20] AKASHI K, MIYATA H, ITOH H, et al. Preparation of giant liposomes in physiological conditions and their characterization under an optical microscope[J]. Biophys J, 1996, 71(6):3242-3250.
[21] MACDONALD R C, MACDONALD R I, MENCO B P M, et al. Small-volume extrusion apparatus for preparation of large, unilamellar vesicles[J]. BBA-Biomembranes, 1991, 1061(2):297-303.
[22] CARQUIN M, D’AURIA L, POLLET H, et al. Recent progress on lipid lateral heterogeneity in plasma membranes[J]. Prog Lipid Res, 2016, 62:1-24.
[23] PARASASSI T, DE G, D'UBALDO A, et al. Phase fluctuation in phospholipid membranes revealed by Laurdan fluorescence[J]. Biophys J, 1990, 57(6):1179-1186.
[24] RODAHL M, HOOK F, FREDRIKSSON C, et al. Simultaneous frequency and dissipation factor QCM measurements of biomolecular adsorption and cell adhesion[J]. Faraday Discuss, 1997, 107:229-246.
[25] ZHANG Hanqiong, WEI Xiaoran, LIU Ling, et al. The role of positively charged sites in the interaction between model cell membranes and γ-Fe2O3 NPs[J]. Sci Total Environ 2019, 673:414-423.
[26] OHYO-REKILA H, RANSTEDT B, LEPPIMAKI P, et al. Cholesterol interactions with phospholipids in membranes[J]. Progress in Lipid Research, 2002, 41(1):66-97.
[27] GARACIA-ARRIBAS A B, ALONSO A, GONI F M. Cholesterol interactions with ceramide and sphingomyelin[J]. Chem Phys Lipids, 2016, 199:26-34.
[1] 高宝玉,宋雯,姚广平,岳钦艳. 环境中高氯酸盐的来源、水污染现状与处理工艺研究进展[J]. 山东大学学报 (工学版), 2020, 50(5): 107-117.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!