山东大学学报 (工学版) ›› 2022, Vol. 52 ›› Issue (3): 134-140.doi: 10.6040/j.issn.1672-3961.0.2021.473
• • 上一篇
张晓瑾1,王月敏1,李贺2,孙秀玲2*,刘钊胜2
ZHANG Xiaojin1, WANG Yuemin1, LI He2, SUN Xiuling2*, LIU Zhaosheng2
摘要: 利用水土评价工具(soil and water assessment tool, SWAT)构建分布式水文模型,模拟流域内主要非点源污染物输出量(总氮输出质量mTN、总磷输出质量mTP),结合Arcgis分析了mTN、mTP时空分布特征,并识别了关键源区。结果表明,2014—2018年流域的年均mTN、mTP为1 973.08、134.41 t,年内变化具有明显季节性特征,汛期平均总氮、总磷输出负荷分别占全年的73.5%、78%,年均mTN、mTP集中在流域坡耕地较多的东北部、东南部,以及流域内种植水稻、玉米较多并在汛期施肥的中部。研究结果可为有效制定泗河流域非点源污染物的消减措施提供技术支撑。
中图分类号:
[1] 张婷婷, 杨刚, 张建国,等. 南水北调东线一期工程输水干线水质变化趋势分析[J]. 水生态学杂志,2022,43(1):8-15. ZHANG Tingting, YANG Gang, ZHANG Jianguo, et al. Trend analysis of water quality change in min water delivery line of the first phase of the east route of south-to-north water transfer project[J]. Journal of Hydroecology, 2022, 43(1):8-15. [2] 荆延德, 张华美. 基于LUCC的南四湖流域面源污染输出风险评估[J]. 自然资源学报, 2019, 34(1):128-139. JING Yande, ZHANG Huamei. Risk assessment of non-point source pollution output in Nansihu Lake Basin based on LUCC [J]. Journal of Natural Resources, 2019, 34(1): 128-139. [3] 孙霞. 南水北调东线(江苏段)沿线污染物总量达标研究[J]. 环境科学与管理, 2016, 41(1): 142-145. SUN Xia. Total amount control in Jiangsu Province sector of South-to-North water diversion project[J]. Environmental Science and Management, 2016, 41(1): 142-145. [4] 陈珊. WASP水质模型在南水北调东线南四湖水质预测中的应用[D].青岛:青岛理工大学, 2012. CHEN Shan. Application of WASP model in water quality prediction of Nansi Lake in the east line of South-to-North Water Transfer Project[D]. Qingdao: Qingdao University of Technology, 2012. [5] 马睿, 程凯, 郭莹莹, 等. 基于SWAT 模型的石汶河流域农业非点源氮污染时空分布特征研究[J]. 中国水土保持,2020,7(4):61-64. MA Rui, CHENG Kai, GUO Yingying, et al. Spatial and temporal distribution characteristics of agricultural non-point source nitrogen pollution in Shiwenhe basin based on SWAST model[J]. Soil and Water Conservation in China, 2020, 7(4):61-64. [6] 徐燕, 孙小银, 刘飞,等. 基于SWAT模型的泗河流域除草剂迁移模拟[J]. 中国环境科学, 2018, 38(10): 3959-3966. XU Yan, SUN Xiaoyin, LIU Fei, et al. Simulation of herbicide transportation in Sihe watershed by SWAT model[J]. China Environmental Science, 2018, 38(10): 3959-3966. [7] ZHANG Z, CHEN S, WAN L, et al. The effects of landscape pattern evolution on runoff and sediment based on SWAT model[J]. Environmental Earth Sciences, 2021, 80(1): 1-12. [8] DONMEZ C, SARI O, BERBEROGLU S, et al. Improving the applicability of the SWAT model to simulate flow and nitrate dynamics in a flat data-scarce agricultural region in the Mediterranean[J]. Water, 2020, 12(12):488-897. [9] UNIYAL B, JHA M K, VERMA A K, et al. Identification of critical areas and evaluation of best management practices using SWAT for sustainable watershed management[J]. Science of the Total Environment, 2020, 744(11):48-59. [10] 马亚丽, 白祖晖, 敖天其. 基于SWAT 模型的龙溪河泸县境内面源污染特征分析[J]. 中国农村水利水电, 2019(7):103-109. MA Yali, BAI Zuhui, AO Tianqi. An analysis of the characteristics of non-point source pollution of Long-xi River Basin in Luxian county based on SWAT model[J]. China Rural Water and Hydropower, 2019(7):103-109. [11] CHANG D, LAI Z, LI S, et al. Critical source areas' identification for non-point source pollution related to nitrogen and phosphorus in an agricultural watershed based on SWAT model[J]. Environmental Science and Pollution Research, 2021(28):47162-47181. [12] WANG Qingrui, LIU Ruimin, MEN Cong, et al. Temporal-spatial analysis of water environmental capacity based on the couple of SWAT model and differential evolution algorithm[J]. Journal of Hydrology, 2019, 569: 155-166. [13] 胡昊. 变化环境下基于SWAT模型的洪安涧河流域径流模拟研究[D]. 郑州:华北水利水电大学, 2018: 20-27. HU Hao. The Runoff Simulation in Hongan River Based on SWAT model under changing environment[D]. Zhengzhou: North China University of Water Resources and Electric Power, 2018: 20-27. [14] LIU R, WANG Q, XU F, et al. Impacts of manure application on SWAT model outputs in the Xiangxi River watershed[J]. Journal of Hydrology, 2017, 555: 479-488. [15] 皮亚男. HSPF在南四湖入湖河流主要污染物通量研究中的应用[D]. 济南:山东大学, 2015: 20-27. PI Yanan. Study on fluxes of the main contaminants of rivers flowing into of Nansi Lake with HSPF model [D]. Jinan: Shandong University, 2015: 20-27. [16] 齐家蕙, 杨丽原, 张游,等. 泗河水质变化与影响因素分析[J]. 济南大学学报(自然科学版), 2021, 35(5): 473-479. QI Jiahui, YANG Liyuan, ZHANG You, et al. Analysis on water quality change and influencing factors of the Sihe River[J]. Journal of University of Jinan(Science and Technology), 2021, 35(5): 473-479. [17] 陈肖敏, 郭平, 彭虹,等. 子流域划分对SWAT模型模拟结果的影响研究[J]. 人民长江, 2016, 47(23): 44-49. CHEN Xiaomin, GUO Ping, PENG Hong, et al. Influence of different sub-watershed division schemes on simulation results of SWAT model[J]. Yangtze River, 2016, 47(23): 44-49. [18] TRAN V B, ISHIDAIRA H, NAKAMURA T, et al. Estimation of nitrogen load with multi-pollution sources using the SWAT model: a case study in the Cau River Basin in Northern Vietnam[J]. Journal of Water and Environment Technology, 2017, 15(3):106-119. [19] 侯伟, 许新勇, 廖晓勇, 等. SWAT模型在三峡库区典型小流域的适应性研究[J]. 西藏大学学报(自然科学版), 2016(2):102-109. HOU Wei, XU Xinyong, LIAO Xiaoyong, et al. Study on the adaptability of SWAT model in a typical small watershed of Three Gorges Reservoir Area[J]. Journal of Tibet University, 2016(2):102-109. [20] 杜娟, 李怀恩, 赵湘璧,等. 基于SWAT模型的渭河流域污染控制效果模拟[J]. 生态与农村环境学报, 2016, 32(4): 563-569. DU Juan, LI Huaien, ZHAO Xiangbi, et al. Simulation of pollution control effect in the Weihe River Valley with SWAT model[J]. Journal of Ecology and Rural Environment, 2016, 32(4): 563-569. [21] DING Y, DONG F, ZHAO J, et al. Non-point source pollution simulation and best management practices analysis based on control units in Northern China[J]. International Journal of Environmental Research and Public Health, 2020, 17(3): 868. |
[1] | 王飞,宋士瞻,曹永吉,谢红涛,张新华,张健,肖天,赵雅文. 基于连续小波变换的风光发电资源多尺度评估[J]. 山东大学学报 (工学版), 2018, 48(5): 124-130. |
[2] | 刘晓明,牛新生,张怡,曹本庆,施啸寒,张友泉,张杰,安鹏,汪湲. 基于NASA观测数据的风电出力时空分布及波动特性分析[J]. 山东大学学报(工学版), 2016, 46(4): 111-116. |
|