山东大学学报 (工学版) ›› 2022, Vol. 52 ›› Issue (3): 51-60.doi: 10.6040/j.issn.1672-3961.0.2021.128
• • 上一篇
戚翔1,冯翔健1,熊骋望2,孙子正3,张一鸣1*
QI Xiang1, FENG Xiangjian1, XIONG Chengwang2, SUN Zizheng3, ZHANG Yiming1*
摘要: 采用嵌入格子-玻尔兹曼方法和自由液面模型的XFlow软件对低雷诺数Re=100下近自由液面圆柱垂向流致振动问题开展数值模拟与机理研究。根据圆柱涡脱落特性和圆柱周围液面形态将浸没比h*∈[0,5]和弗劳德数Fr∈[0.3,2]的参数空间划分为6种不同的流态,研究不同流态下圆柱振动特性和振动-涡脱落-自由液面耦合作用。结果表明,圆柱振幅和振动频率都随自由液面的靠近而降低,而当自由液面非常靠近圆柱时,尾迹状态从绝对不稳定性转为对流不稳定性,圆柱与自由液面之间形成的射流状流动附着在圆柱表面上,抑制了涡脱落过程,导致圆柱不再振动。
中图分类号:
[1] 王广地, 周晓军, 高波. 水下悬浮隧道波流荷载分析研究[J]. 铁道建筑, 2007(10): 48-51. WANG Guangdi, ZHOU Xiaojun, GAO Bo. Analytical study on wavy-flow load transmitted to underwater floating tunnel[J]. Railway Engineering, 2007(10): 48-51. [2] 黄柳楠. 水下悬浮隧道水动力特性研究[D]. 上海:上海交通大学, 2018. HUANG Liunan. Research on hydrodynamic characteri-stics of submerged floating tunnels[D]. Shanghai: Shanghai Jiao Tong University, 2018. [3] FENG C C. The measurement of vortex induced effects in flow past stationary and oscillating circular and D-section cylinders[D]. Vancover, Canada: Department of Mechanical Engineering, University of British Columbia, 1968. [4] WILLIAMSON C H K, ROSHKO A. Vortex formation in the wake of an oscillating cylinder[J]. Journal of Fluids and Structures, 1988, 2(4): 355-381. [5] BRIKA D, LANEVILLE A. Vortex-induced vibrations of a long flexible circular cylinder[J]. Journal of Fluid Mechanics, 1993, 250: 481-508. [6] KHALAK A, WILLIAMSON C H K. Motions, forces and mode transitions in vortex-induced vibrations at low mass-damping[J]. Journal of Fluids and Structures, 1999, 13(7): 813-851. [7] GOVERDHAN R, WILLIAMSON C H K. Modes of vortex formation and frequency response of a freely vibrating cylinder[J]. Journal of Fluid Mechanics, 2000, 420: 85-130. [8] CHUNG M. Hydrodynamics of flow over a transversely oscillating circular cylinder beneath a free surface[J]. Journal of Fluids and Structures, 2014, 54: 27-73. [9] SAELIM N. Self-excited oscillations of a horizontal cylinder adjacent to a free surface[D]. Pennsylvania, United States of America: Department of Mechanical Engineering and Mechanics, Lehigh University, 1999. [10] RAGHAVAN K. Energy extraction from a steady flow using vortex induced vibration[D]. Michigan, United States of America: Naval Architecture and Marine Engineering, University of Michigan, 2007. [11] ZHANG B, SONG B, LI B, et al. Numerical study of the effect of submergence depth on hydrokinetic energy conversion of an elastically mounted square cylinder in FIV[J]. Ocean Engineering, 2020, 200: 107030. [12] LUGT H J. Local flow properties at a viscous free surface[J]. Physics of Fluids, 1987, 30(12):3647-3652. [13] ROOD E P. Vorticity interactions with a free surface[J]. Fluid Vortices, 1995, 30: 687-730. [14] BRONS M, THOMPSON M C, LEWEKE T, et al. Vorticity generation and conservation for two-dimensional interfaces and boundaries[J]. Journal of Fluid Mechanics, 2014, 758: 63-93. [15] TRIANTAFYLLOU G S, DIMAS A A. Interaction of two-dimensional separated flows with a free surface at low froude numbers[J]. Physics of Fluids, 1989, 1(11): 1813-1821. |
[1] | 徐昊,魏守水*,张敬涛. 一种新型微流体主动混合器的仿真与分析[J]. 山东大学学报(工学版), 2010, 40(3): 57-60. |
[2] | 王建明 宫文军 高娜. 基于ALE法的磨料水射流加工数值模拟[J]. 山东大学学报(工学版), 2010, 40(1): 48-52. |
[3] | 李新平 代翼飞 胡静. 某岩溶隧道围岩稳定性及涌水量预测的流固耦合分析[J]. 山东大学学报(工学版), 2009, 39(4): 1-6. |
[4] | 尚翠霞 王勇 谢玉东. 流体控制阀的流固耦合特性[J]. 山东大学学报(工学版), 2008, 38(6): 11-14. |
[5] | 郑继周,程林,杜文静 . 充液弹性管束流固耦合系统模态分析[J]. 山东大学学报(工学版), 2007, 37(4): 55-59 . |
[6] | 牛新生,叶华,王亮 . 充液弹性管束流固耦合系统模态分析[J]. 山东大学学报(工学版), 2007, 37(4): 0-0 . |
|